早教吧作业答案频道 -->数学-->
1.求证:当n为整数是,形如4n+3的质数有无穷多个.2.设k(k≥3)是给定的正整数,是否存在正整数m,n使得m(m+k)=n(n+1)?3,证明:对任意三角形,一定存在两条边,它们的长u,v满足1≤u/v≤(1+√5)
题目详情
1.求证:当n为整数是,形如4n+3的质数有无穷多个.
2.设k(k≥3)是给定的正整数,是否存在正整数m,n使得m(m+k)=n(n+1)?
3,证明:对任意三角形,一定存在两条边,它们的长u,v满足1≤u/v≤(1+√5)/24.10个学生参加n个课外小组,每一个小至多5个人,每两个学生至少参加某一个小组,任意两个课外小组,至少可以找到两个学生,他们都不在这两个课外小组中,求n的最小值.
还有一个!
在三角形ABC中是否存在一个点P,使得过P的任意一直线多将该三角形分成三角形分成等面积的两部分?为什么?
那个,各位可不可以写得详细一点,我很笨的,一点点的提示对我没什么作用,呵呵!
2.设k(k≥3)是给定的正整数,是否存在正整数m,n使得m(m+k)=n(n+1)?
3,证明:对任意三角形,一定存在两条边,它们的长u,v满足1≤u/v≤(1+√5)/24.10个学生参加n个课外小组,每一个小至多5个人,每两个学生至少参加某一个小组,任意两个课外小组,至少可以找到两个学生,他们都不在这两个课外小组中,求n的最小值.
还有一个!
在三角形ABC中是否存在一个点P,使得过P的任意一直线多将该三角形分成三角形分成等面积的两部分?为什么?
那个,各位可不可以写得详细一点,我很笨的,一点点的提示对我没什么作用,呵呵!
▼优质解答
答案和解析
这题目都不太难,可是要做也真要花些时间.
第一题:
证明:假设只有有限多个 4n+3 型的质数, 它们分别是 P(1), P(2), ..., P(k).
令 Q=P(1)^2P(2)^2...P(k)^2+2,
首先, P(1)^2, P(2)^2 等等都是 4n+1 型的数,所以 Q 是 4n+3 型的数. Q 只能有 4n+1 型和 4n+3 型的素因数,而且至少有一个4n+3 型的素因数R, 因为 若干4n+1 的数的乘积仍然是 4n+1 型, 不可能等于 Q. 其次, 因为 Q 除以 P(1), P(2), ..., P(k) 的余数都是 2, R 不可能是 P(1), ..., P(k) 中任何一个.我们找出了一个新的 4n+3 型质数, 与假设矛盾.
第一题:
证明:假设只有有限多个 4n+3 型的质数, 它们分别是 P(1), P(2), ..., P(k).
令 Q=P(1)^2P(2)^2...P(k)^2+2,
首先, P(1)^2, P(2)^2 等等都是 4n+1 型的数,所以 Q 是 4n+3 型的数. Q 只能有 4n+1 型和 4n+3 型的素因数,而且至少有一个4n+3 型的素因数R, 因为 若干4n+1 的数的乘积仍然是 4n+1 型, 不可能等于 Q. 其次, 因为 Q 除以 P(1), P(2), ..., P(k) 的余数都是 2, R 不可能是 P(1), ..., P(k) 中任何一个.我们找出了一个新的 4n+3 型质数, 与假设矛盾.
看了 1.求证:当n为整数是,形如...的网友还看了以下:
在一个整数的末尾添上2个0,这个整数就增加了1098,这个整数是多少?增加了是1089 2020-05-23 …
问:在一个整数末尾添上2个0,这个整数就增加了1280,这个整数是多少? 2020-05-23 …
在一个整数的未尾添加2个0,这个整数就增加了1089,这个整数是多少? 2020-05-23 …
在一个整数的末尾加上2个0,这个整数曾加了1089求这个整数是多少? 2020-06-03 …
在一个整数后面加一个0,这个数比原来多360,原来这个整数是多少?说出原因! 2020-06-13 …
如图,将自然数按如下规则“放置”在平面直角坐标系中,使其满足条件:①每个自然数“放置”在一个“整点 2020-06-21 …
在一个整数的末尾添上一个0,这个数就比原来大720,这个整数是多少. 2020-07-07 …
在一个整数的末位添上一个0,这个数增加了108.这个整数原来是多少? 2020-07-18 …
在一个整数的末尾去掉一个0,这个整数就减少了486.这个整数是多少 2020-07-22 …
在一个整数的某两个数字间点上小数点后,把得到的小数与原来的整数相加,和是10063.64,原来的整 2020-07-25 …