早教吧作业答案频道 -->数学-->
1.求证:当n为整数是,形如4n+3的质数有无穷多个.2.设k(k≥3)是给定的正整数,是否存在正整数m,n使得m(m+k)=n(n+1)?3,证明:对任意三角形,一定存在两条边,它们的长u,v满足1≤u/v≤(1+√5)
题目详情
1.求证:当n为整数是,形如4n+3的质数有无穷多个.
2.设k(k≥3)是给定的正整数,是否存在正整数m,n使得m(m+k)=n(n+1)?
3,证明:对任意三角形,一定存在两条边,它们的长u,v满足1≤u/v≤(1+√5)/24.10个学生参加n个课外小组,每一个小至多5个人,每两个学生至少参加某一个小组,任意两个课外小组,至少可以找到两个学生,他们都不在这两个课外小组中,求n的最小值.
还有一个!
在三角形ABC中是否存在一个点P,使得过P的任意一直线多将该三角形分成三角形分成等面积的两部分?为什么?
那个,各位可不可以写得详细一点,我很笨的,一点点的提示对我没什么作用,呵呵!
2.设k(k≥3)是给定的正整数,是否存在正整数m,n使得m(m+k)=n(n+1)?
3,证明:对任意三角形,一定存在两条边,它们的长u,v满足1≤u/v≤(1+√5)/24.10个学生参加n个课外小组,每一个小至多5个人,每两个学生至少参加某一个小组,任意两个课外小组,至少可以找到两个学生,他们都不在这两个课外小组中,求n的最小值.
还有一个!
在三角形ABC中是否存在一个点P,使得过P的任意一直线多将该三角形分成三角形分成等面积的两部分?为什么?
那个,各位可不可以写得详细一点,我很笨的,一点点的提示对我没什么作用,呵呵!
▼优质解答
答案和解析
这题目都不太难,可是要做也真要花些时间.
第一题:
证明:假设只有有限多个 4n+3 型的质数, 它们分别是 P(1), P(2), ..., P(k).
令 Q=P(1)^2P(2)^2...P(k)^2+2,
首先, P(1)^2, P(2)^2 等等都是 4n+1 型的数,所以 Q 是 4n+3 型的数. Q 只能有 4n+1 型和 4n+3 型的素因数,而且至少有一个4n+3 型的素因数R, 因为 若干4n+1 的数的乘积仍然是 4n+1 型, 不可能等于 Q. 其次, 因为 Q 除以 P(1), P(2), ..., P(k) 的余数都是 2, R 不可能是 P(1), ..., P(k) 中任何一个.我们找出了一个新的 4n+3 型质数, 与假设矛盾.
第一题:
证明:假设只有有限多个 4n+3 型的质数, 它们分别是 P(1), P(2), ..., P(k).
令 Q=P(1)^2P(2)^2...P(k)^2+2,
首先, P(1)^2, P(2)^2 等等都是 4n+1 型的数,所以 Q 是 4n+3 型的数. Q 只能有 4n+1 型和 4n+3 型的素因数,而且至少有一个4n+3 型的素因数R, 因为 若干4n+1 的数的乘积仍然是 4n+1 型, 不可能等于 Q. 其次, 因为 Q 除以 P(1), P(2), ..., P(k) 的余数都是 2, R 不可能是 P(1), ..., P(k) 中任何一个.我们找出了一个新的 4n+3 型质数, 与假设矛盾.
看了 1.求证:当n为整数是,形如...的网友还看了以下:
设A是整数集的一个非空子集,对于k∈A,如果k—1不属于A且k+1不属于A,那么k是A的一个“孤立 2020-04-06 …
设是一个整数集的非空子集,对于k∈A,如果k-1不属于A,且k-1不属于A,那么A是一个"孤立元素 2020-04-06 …
1/k(k+1)(k+2)数列题型比如1/k(k+1)可以拆成1/k-1/(k+1)然后再用叠加法 2020-05-13 …
n个连续整数的乘积一定能被n!整除如题,可以证明一下么?....不是你们理解的那样比如说K为整数, 2020-05-17 …
设A={X|X=2k,k属于正整数}.B={X|X=2k+1,k属于正整数}.C={X|X=2(k 2020-06-03 …
⒈已知下列集合:(1)A1={n/n=2k+1,k属于N(自然数),k≤5};(2)A2={x/x 2020-06-11 …
n个连续整数的乘积一定能被n!整除如题,可以证明一下么?....不是你们理解的那样比如说K为整数, 2020-06-27 …
1)利用数学归纳法,证明P(n):n^4+2n³-n²+14n能被8整除.当n=k,k^4+2k³ 2020-07-13 …
定义一种运算:ak=ak-1+1-4([4分之k-1]-[4分之k-2]),其中k是正整数,且k≥ 2020-07-31 …
给定正整数k(1≤k≤9),令KKKK(n个)表示各位数字均为k的十进制n位正整数给定正整数k(1≤ 2020-12-23 …