早教吧作业答案频道 -->数学-->
1.求证:当n为整数是,形如4n+3的质数有无穷多个.2.设k(k≥3)是给定的正整数,是否存在正整数m,n使得m(m+k)=n(n+1)?3,证明:对任意三角形,一定存在两条边,它们的长u,v满足1≤u/v≤(1+√5)
题目详情
1.求证:当n为整数是,形如4n+3的质数有无穷多个.
2.设k(k≥3)是给定的正整数,是否存在正整数m,n使得m(m+k)=n(n+1)?
3,证明:对任意三角形,一定存在两条边,它们的长u,v满足1≤u/v≤(1+√5)/24.10个学生参加n个课外小组,每一个小至多5个人,每两个学生至少参加某一个小组,任意两个课外小组,至少可以找到两个学生,他们都不在这两个课外小组中,求n的最小值.
还有一个!
在三角形ABC中是否存在一个点P,使得过P的任意一直线多将该三角形分成三角形分成等面积的两部分?为什么?
那个,各位可不可以写得详细一点,我很笨的,一点点的提示对我没什么作用,呵呵!
2.设k(k≥3)是给定的正整数,是否存在正整数m,n使得m(m+k)=n(n+1)?
3,证明:对任意三角形,一定存在两条边,它们的长u,v满足1≤u/v≤(1+√5)/24.10个学生参加n个课外小组,每一个小至多5个人,每两个学生至少参加某一个小组,任意两个课外小组,至少可以找到两个学生,他们都不在这两个课外小组中,求n的最小值.
还有一个!
在三角形ABC中是否存在一个点P,使得过P的任意一直线多将该三角形分成三角形分成等面积的两部分?为什么?
那个,各位可不可以写得详细一点,我很笨的,一点点的提示对我没什么作用,呵呵!
▼优质解答
答案和解析
这题目都不太难,可是要做也真要花些时间.
第一题:
证明:假设只有有限多个 4n+3 型的质数, 它们分别是 P(1), P(2), ..., P(k).
令 Q=P(1)^2P(2)^2...P(k)^2+2,
首先, P(1)^2, P(2)^2 等等都是 4n+1 型的数,所以 Q 是 4n+3 型的数. Q 只能有 4n+1 型和 4n+3 型的素因数,而且至少有一个4n+3 型的素因数R, 因为 若干4n+1 的数的乘积仍然是 4n+1 型, 不可能等于 Q. 其次, 因为 Q 除以 P(1), P(2), ..., P(k) 的余数都是 2, R 不可能是 P(1), ..., P(k) 中任何一个.我们找出了一个新的 4n+3 型质数, 与假设矛盾.
第一题:
证明:假设只有有限多个 4n+3 型的质数, 它们分别是 P(1), P(2), ..., P(k).
令 Q=P(1)^2P(2)^2...P(k)^2+2,
首先, P(1)^2, P(2)^2 等等都是 4n+1 型的数,所以 Q 是 4n+3 型的数. Q 只能有 4n+1 型和 4n+3 型的素因数,而且至少有一个4n+3 型的素因数R, 因为 若干4n+1 的数的乘积仍然是 4n+1 型, 不可能等于 Q. 其次, 因为 Q 除以 P(1), P(2), ..., P(k) 的余数都是 2, R 不可能是 P(1), ..., P(k) 中任何一个.我们找出了一个新的 4n+3 型质数, 与假设矛盾.
看了 1.求证:当n为整数是,形如...的网友还看了以下:
(4/5)-(4/5)的二次方+(4/5)的三次方-(4/5)的四次方+(-1)的n-1次方(4/ 2020-04-09 …
正整数n(n>1)的三次方分解为m个连续奇数之和,n是质数的时候只有一种吗?正整数n,n是质数的时 2020-04-10 …
求救初二助学题目已知m不等于n,且m的平方-n=5,n的平方-m=5,求m的3次方+n的三次方+m 2020-04-27 …
2x乘以(x的n次方+2)=2x的n+1次方-4,求x的值若a的三次方(3a的n次方-2a的m次方 2020-05-14 …
正确抄写:muncanwegooutnowimafraidyoucant二.看音标写单词/dʒu: 2020-05-16 …
怎麽证1的三次方+2的三次方+3的三次方+...+n的三次方=(1+2+3+...n)的平方?是找 2020-05-17 …
地球位夏至日时,66.5°N的高度角多少?地球位冬至日时,66.5°N的高度角多少? 2020-05-22 …
以知m的平方=n+2,n的平方=m+2,且m不等于,则m的三次方减2mn+n的三次方=? 2020-06-06 …
这个极限是怎么求出来的?当n趋向于无穷大的时候(1/n)-sin(1/n)等价于(1/6)n的三次 2020-06-14 …
某市(约21.5°N)的周邹家准备在某楼盘买房,楼是东西延伸,每家南北均有阳台;三栋楼的楼高均是4 2020-06-18 …