早教吧作业答案频道 -->数学-->
已知正数A,B,C,常用对数分别为a,b,c且a+b+c=0,求证A^(1/b+1/c)+B^(1/c+1/a)+C^(1/a+1/b)=1/1000
题目详情
已知正数A,B,C,常用对数分别为a,b,c且a+b+c=0,求证A^(1/b+1/c) +B^(1/c+1/a)+C^(1/a+1/b)= 1/1000
▼优质解答
答案和解析
证明:因为i lgA=a lgB=b lgC=c a+b+c=0
所以 a+b= -c a+c= -b b+c= -a
将要证明的左边取对数,可得:
lg[A^(1/b+1/c)+B^(1/c+1/a)+C^(1/a+1/b)=(1/b+1/c)lgA+(1/c+1/a)lgB+(1/b+1/a)lgC
=(1/b+1/c)a+(1/c+1/a)b+(1/b+1/a)c
=a/b+a/c+b/c+b/a+c/b+c/a
=(a+c)/b+(b+c)/a+(a+b)/c
=(-b)/b+(-a)/a+(-c)/c
=(-1)+(-1)+(-1)
= -3
=lg10^(-3)
= lg(1/1000)
所以 A^(1/b+1/c) +B^(1/c+1/a)+C^(1/a+1/b)=1/1000
证毕
所以 a+b= -c a+c= -b b+c= -a
将要证明的左边取对数,可得:
lg[A^(1/b+1/c)+B^(1/c+1/a)+C^(1/a+1/b)=(1/b+1/c)lgA+(1/c+1/a)lgB+(1/b+1/a)lgC
=(1/b+1/c)a+(1/c+1/a)b+(1/b+1/a)c
=a/b+a/c+b/c+b/a+c/b+c/a
=(a+c)/b+(b+c)/a+(a+b)/c
=(-b)/b+(-a)/a+(-c)/c
=(-1)+(-1)+(-1)
= -3
=lg10^(-3)
= lg(1/1000)
所以 A^(1/b+1/c) +B^(1/c+1/a)+C^(1/a+1/b)=1/1000
证毕
看了 已知正数A,B,C,常用对数...的网友还看了以下:
1.a≠0,b≠0,则a/|a|+b/|b|的不同取值的个数为()A.3B.2C.1D.02.若|x 2020-03-31 …
数集A满足条件若a∈A则有(1+a)/(1-a)∈A(a≠1)数集A满足条件若a∈A则有(1+a) 2020-04-05 …
基本不等式超费解130已知a>b>0,求a2+1/(a*b)+1/[a*(a-b)]的最小值.a2 2020-05-13 …
高二上数学不等式【在线等,急】1.求证a²=b²+≥2a+2b2.用作差法求证:1)a²+b²+5 2020-05-13 …
设集合A={1,a,b},B={a,a^2,ab}且A=B,求实数A,B的值因为集合需要满足互异性 2020-05-15 …
假设集合A满足以下条件:诺a∈A,a不等于1,则1-a分之1属于A若a属于A,则1-a分之一属于A 2020-07-03 …
令a、b、c是互不相等的正数如何证明aˆ2+1/aˆ2≥a+1/a成立令a、b、c是互不相等的正数 2020-07-09 …
a,b是复数如果a,b的模均小于1求证a-a,b是复数如果a,b的模均小于1求证a-b/1-a'b 2020-07-30 …
若a,b,c均为实数,且a=x^2-2y+π/2,b=y^2-2z+π/3,c=z^2-2x+π/6 2020-11-01 …
递回关系式的运算公式(数列)以下是推导一个公式"a=a+r(1-p^n)/(1-p)"的过程a=p* 2021-01-13 …