早教吧作业答案频道 -->数学-->
已知正方形ABCD中,点M是边CB(或CB的延长线)上任意一点,AN平分∠MAD,交射线DC于点N.(1)如图1,若点M在线段CB上①依题意补全图1;②用等式表示线段AM,BM,DN之间的数量关系,并证明
题目详情
已知正方形ABCD中,点M是边CB(或CB的延长线)上任意一点,AN平分∠MAD,交射线DC于点N.
(1)如图1,若点M在线段CB上
①依题意补全图1;
②用等式表示线段AM,BM,DN之间的数量关系,并证明;
(2)如图2,若点M在线段CB的延长线上,请直接写出线段AM,BM,DN之间的数量关系.

(1)如图1,若点M在线段CB上
①依题意补全图1;
②用等式表示线段AM,BM,DN之间的数量关系,并证明;
(2)如图2,若点M在线段CB的延长线上,请直接写出线段AM,BM,DN之间的数量关系.

▼优质解答
答案和解析
(1)①补全图形,如右图1所示.
②数量关系:AM=BM+DN,
证明:在CD的延长线上截取DE=BM,连接AE,
∵四边形ABCD是正方形
∴∠1=∠B=90°,AD=AB,AB∥CD
∴∠6=∠BAN
在△ADE和△ABM中
∴△ADE≌△ABM(SAS)
∴AE=AM,∠3=∠2
又∵AN平分∠MAD,
∴∠5=∠4,
∴∠EAN=∠BAN,
又∵∠6=∠BAN,
∴∠EAN=∠6,
∴AE=NE,
又∵AE=AM,NE=DE+DN=BM+DN,
∴AM=BM+DN;
(2)数量关系:AM=DN-BM,
证明:在线段DC上截取线段DE=BM,如图2所示,
∵四边形ABCD是正方形,
∴AB=AD,∠ABM=∠ADE=90°,
∴△ABM≌△ADE(SAS),
∴∠1=∠4,
又∵AN平分∠DAM,
∴∠MAN=∠DAN,
∴∠2=∠3,
∵AB∥CD,
∴∠2=∠ANE,
∴∠3=∠ANE,
∴AE=EN,
∵DN=DE+EN,AE=AM=EN,BM=DE,
∴DN=BM+AM,
即AM=DN-BM.
(1)①补全图形,如右图1所示.②数量关系:AM=BM+DN,
证明:在CD的延长线上截取DE=BM,连接AE,
∵四边形ABCD是正方形
∴∠1=∠B=90°,AD=AB,AB∥CD
∴∠6=∠BAN
在△ADE和△ABM中
|
∴△ADE≌△ABM(SAS)
∴AE=AM,∠3=∠2
又∵AN平分∠MAD,
∴∠5=∠4,
∴∠EAN=∠BAN,
又∵∠6=∠BAN,
∴∠EAN=∠6,
∴AE=NE,
又∵AE=AM,NE=DE+DN=BM+DN,
∴AM=BM+DN;
(2)数量关系:AM=DN-BM,
证明:在线段DC上截取线段DE=BM,如图2所示,

∵四边形ABCD是正方形,
∴AB=AD,∠ABM=∠ADE=90°,
∴△ABM≌△ADE(SAS),
∴∠1=∠4,
又∵AN平分∠DAM,
∴∠MAN=∠DAN,
∴∠2=∠3,
∵AB∥CD,
∴∠2=∠ANE,
∴∠3=∠ANE,
∴AE=EN,
∵DN=DE+EN,AE=AM=EN,BM=DE,
∴DN=BM+AM,
即AM=DN-BM.
看了 已知正方形ABCD中,点M是...的网友还看了以下:
数学配套练习册八年级上北师大版P8题探究实践一知a,b,c是在△ABC的三边,且满足a方+b方+c 2020-04-05 …
某日A,B两城市受到台风袭击的概率相同,已知A或B受到台风袭击的概率为0.36,若用X表示这一天受 2020-06-09 …
英语语法Ididnotwriteasinglecard.为什么有a了还可以用single,两个都表 2020-06-14 …
1、一知a是有理数,a的平方一定大于a吗?若不是,请给出正确答案判断.2下列各式一定成立吗?(1) 2020-07-16 …
如何证明||a|-|b||小于或等于|a-b|已知|a+b|小于或等于|a|+|b|提示:由a=( 2020-07-30 …
一道关于连续性的问题,f(x)在[a,b]上连续,x0∈[a,b],且f(x0)>0,由f(x)的 2020-07-31 …
甲乙两地之间有一条公路,一辆汽车从甲地开往乙地行80千米,正好到达图中的A站;如果从乙地往甲地行4 2020-08-02 …
选择下列各句中是单句的一项A.或者把老虎打死,或者被老虎吃掉。B.桥的设计完全合乎科学原理,施工技术 2020-11-02 …
有一题公务员判断推理的解析看不懂:为什么说发展推出污染等于没有发展或污染我知道或者A或者B可以翻译成 2020-11-21 …
或生而知之,或学而知之,或因而知之,及其知之一也或安而行之或力而行之或勉强而行之.及其成功一也,子曰 2020-11-28 …