早教吧作业答案频道 -->数学-->
已知正方形ABCD中,点M是边CB(或CB的延长线)上任意一点,AN平分∠MAD,交射线DC于点N.(1)如图1,若点M在线段CB上①依题意补全图1;②用等式表示线段AM,BM,DN之间的数量关系,并证明
题目详情
已知正方形ABCD中,点M是边CB(或CB的延长线)上任意一点,AN平分∠MAD,交射线DC于点N.
(1)如图1,若点M在线段CB上
①依题意补全图1;
②用等式表示线段AM,BM,DN之间的数量关系,并证明;
(2)如图2,若点M在线段CB的延长线上,请直接写出线段AM,BM,DN之间的数量关系.

(1)如图1,若点M在线段CB上
①依题意补全图1;
②用等式表示线段AM,BM,DN之间的数量关系,并证明;
(2)如图2,若点M在线段CB的延长线上,请直接写出线段AM,BM,DN之间的数量关系.

▼优质解答
答案和解析
(1)①补全图形,如右图1所示.
②数量关系:AM=BM+DN,
证明:在CD的延长线上截取DE=BM,连接AE,
∵四边形ABCD是正方形
∴∠1=∠B=90°,AD=AB,AB∥CD
∴∠6=∠BAN
在△ADE和△ABM中
∴△ADE≌△ABM(SAS)
∴AE=AM,∠3=∠2
又∵AN平分∠MAD,
∴∠5=∠4,
∴∠EAN=∠BAN,
又∵∠6=∠BAN,
∴∠EAN=∠6,
∴AE=NE,
又∵AE=AM,NE=DE+DN=BM+DN,
∴AM=BM+DN;
(2)数量关系:AM=DN-BM,
证明:在线段DC上截取线段DE=BM,如图2所示,
∵四边形ABCD是正方形,
∴AB=AD,∠ABM=∠ADE=90°,
∴△ABM≌△ADE(SAS),
∴∠1=∠4,
又∵AN平分∠DAM,
∴∠MAN=∠DAN,
∴∠2=∠3,
∵AB∥CD,
∴∠2=∠ANE,
∴∠3=∠ANE,
∴AE=EN,
∵DN=DE+EN,AE=AM=EN,BM=DE,
∴DN=BM+AM,
即AM=DN-BM.
(1)①补全图形,如右图1所示.②数量关系:AM=BM+DN,
证明:在CD的延长线上截取DE=BM,连接AE,
∵四边形ABCD是正方形
∴∠1=∠B=90°,AD=AB,AB∥CD
∴∠6=∠BAN
在△ADE和△ABM中
|
∴△ADE≌△ABM(SAS)
∴AE=AM,∠3=∠2
又∵AN平分∠MAD,
∴∠5=∠4,
∴∠EAN=∠BAN,
又∵∠6=∠BAN,
∴∠EAN=∠6,
∴AE=NE,
又∵AE=AM,NE=DE+DN=BM+DN,
∴AM=BM+DN;
(2)数量关系:AM=DN-BM,
证明:在线段DC上截取线段DE=BM,如图2所示,

∵四边形ABCD是正方形,
∴AB=AD,∠ABM=∠ADE=90°,
∴△ABM≌△ADE(SAS),
∴∠1=∠4,
又∵AN平分∠DAM,
∴∠MAN=∠DAN,
∴∠2=∠3,
∵AB∥CD,
∴∠2=∠ANE,
∴∠3=∠ANE,
∴AE=EN,
∵DN=DE+EN,AE=AM=EN,BM=DE,
∴DN=BM+AM,
即AM=DN-BM.
看了 已知正方形ABCD中,点M是...的网友还看了以下:
vfp中字段的问题某数据表有c型,n型和l型三个字段,其中c型字段宽度为5,n型宽度为6,小数位为 2020-05-13 …
在平面直角坐标系xOy中,动点P到定点F(0,)的距离比点P到x轴的距离大,设动点P的轨迹为曲线C 2020-06-14 …
小磁针有两个磁极,若从中间截成两端,则A.一段是N极,一段时S极B.每段都有两个N极或两个S极C. 2020-07-07 …
如图,点C、D、E将线段AB分成AC、CD、DE、EB四段,如果在线段AB上任意取n个不同于A、B 2020-07-22 …
(2003•东城区二模)某城市为了改善交通状况,需进行路网改造.已知原有道路a个标段(注:1个标段 2020-07-31 …
二项式系数C(m,n)展开式,和与A(m,n)关系C(m,n)=(n-m)!/n! 2020-07-31 …
组合数学递推关系看不懂...下了好几份课件,看了很久依然看不懂怎么由特征根方程求得a(n)通项公式 2020-08-01 …
关于比例选段的题,已知mn=ab,将它改写成比例式,使n放在第四比例项是已知a=5m,b=5cm, 2020-08-03 …
(2012•南通)线段MN在直角坐标系中的位置如图所示,若线段M′N′与MN关于y轴对称,则点M的对 2020-11-12 …
M河段与N河段降水量的差异和主要原因分别是()A.M河段大于N河段M受西风影响,降水多B.M河段大于 2020-12-27 …