早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在正方体ABCD-A1B1C1D1中,点N在线段B1D1上,且D1N=2NB1,点M在线段A1B上,且BM=2MA1.求证:MN∥平面AC1B.

题目详情
如图,在正方体ABCD-A1B1C1D1中,点N在线段B1D1上,且D1N=2NB1,点M在线段A1B上,且BM=2MA1.求证:MN∥平面AC1B.
▼优质解答
答案和解析
证明:过点M作ME⊥BB1,垂足为E,连接NE,
则由题意得Rt△BME∽Rt△BA1B1
∵BM=2MA1,∴BE=2MA1
∵D1N=2NB1,∴Rt△B1NE∽Rt△B1D1B,
∴NE∥D1B,
∵ME⊥BB1,AB⊥BB1,∴ME∥AB,
∵NE∩ME=E,D1B∩AB1=B,且NE∥D1B、ME∥AB,
∴面MNE∥面ABC1D1,面ABC1⊂面ABC1D1中,
即面MNE∥平面AC1B,
∴MN∥平面AC1B.