早教吧作业答案频道 -->数学-->
根据定义证明limx趋近于正无穷sinx/√x=0
题目详情
根据定义证明limx趋近于正无穷sinx/√x=0
▼优质解答
答案和解析
证明:对任意的ε>0,解不等式
│(sinx/√x)-0│=│sinx/√x│≤1/√x1/ε^2,即取正数A≥1/ε^2.
于是,对任意的ε>0,总存在正数A≥1/ε^2,当x>A时,有│(sinx/√x)-0│+∞)(sinx/√x)=0,证毕.
│(sinx/√x)-0│=│sinx/√x│≤1/√x1/ε^2,即取正数A≥1/ε^2.
于是,对任意的ε>0,总存在正数A≥1/ε^2,当x>A时,有│(sinx/√x)-0│+∞)(sinx/√x)=0,证毕.
看了 根据定义证明limx趋近于正...的网友还看了以下: