早教吧作业答案频道 -->数学-->
如图,在四边形ABCD中,∠D=90°,AC平分∠DAB,且点C在以AB为直径的⊙O上.(1)求证:CD是⊙O的切线;(2)点E是⊙O上一点,连接BE,CE.若∠BCE=42°,cos∠DAC=910,AC=m,写出求线段CE长的思路
题目详情
如图,在四边形ABCD中,∠D=90°,AC平分∠DAB,且点C在以AB为直径的⊙O上.

(1)求证:CD是⊙O的切线;
(2)点E是⊙O上一点,连接BE,CE.若∠BCE=42°,cos∠DAC=
,AC=m,写出求线段CE长的思路.

(1)求证:CD是⊙O的切线;
(2)点E是⊙O上一点,连接BE,CE.若∠BCE=42°,cos∠DAC=
| 9 |
| 10 |
▼优质解答
答案和解析
(1)证明:连接OC,如图1中.

∵AC平分∠DAB,
∴∠1=∠2,
∵OA=OC,
∴∠3=∠2,
∴∠3=∠1,
∴AD∥OC,
∴∠OCD=∠D=90°,
又∵OC是⊙O的半径,
∴CD是⊙O的切线.
(2)求解思路如下:
过点B作BF⊥CE于F,如图.

①在Rt△ACB中,根据BC=AC•tan∠CAB,求出BC.
②在Rt△CFB中,由∠BCF=42°及BC的长,可求CF,BF的长;
③在Rt△EFB中,由∠E的三角函数值及BF的长,可EF的长;
④由CE=CF+EF,可求CE的长.

∵AC平分∠DAB,
∴∠1=∠2,
∵OA=OC,
∴∠3=∠2,
∴∠3=∠1,
∴AD∥OC,
∴∠OCD=∠D=90°,
又∵OC是⊙O的半径,
∴CD是⊙O的切线.
(2)求解思路如下:
过点B作BF⊥CE于F,如图.

①在Rt△ACB中,根据BC=AC•tan∠CAB,求出BC.
②在Rt△CFB中,由∠BCF=42°及BC的长,可求CF,BF的长;
③在Rt△EFB中,由∠E的三角函数值及BF的长,可EF的长;
④由CE=CF+EF,可求CE的长.
看了 如图,在四边形ABCD中,∠...的网友还看了以下:
△ABC,∠ACB=90度,D是BC延长线上的一点,E是AB上一点且EC垂直平分BD,DE交AC于F 2020-03-30 …
在平行四边形ABCD中,从顶点D向AB作垂线,垂足为E,且E是AB中点,已知平...在平行四边形A 2020-05-13 …
已知ABCD-A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,且AE=FC1= 2020-05-16 …
如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,且E在棱PB上(设空间向量)(1)求证 2020-05-16 …
在公式E=I(R+r/n)中,已知E,I,R,r,求E≠IR,求n在公式E=I(R+r/n)中,已 2020-05-23 …
在平面直角坐标系xoy中,直线y=-x+m经过点A(2,0),交y轴于B.点D为x轴上一点且S△A 2020-06-14 …
在平面直角坐标系xOy中,直线y=-x+m经过点A(2,0),交y轴于点B.点D为x轴上一点,且S 2020-06-14 …
设矩阵A=(1000,-2300,0-450,00-67),且B=(E+设矩阵A=(1000,-2 2020-07-17 …
已知圆E的圆心M在直线X-Y=0上,且过定点A(√5,2√5),B(-3,-4)1求圆E方程2求斜 2020-07-26 …
如图,直角坐标平面xOy中,点A在x轴上,点C与点E在y轴上,且E为OC中点,BC∥x轴,且BE⊥ 2020-07-29 …