早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图所示是为了检验某种防护罩承受冲击力的装置,M是半径为R=1.0m的固定于竖直平面内的14光滑圆弧轨道,轨道上端切线水平.N为待检验的固定曲面,该曲面在竖直面内的截面为抛物面,抛

题目详情
如图所示是为了检验某种防护罩承受冲击力的装置,M是半径为R=1.0m的固定于竖直平面内的
1
4
光滑圆弧轨道,轨道上端切线水平.N为待检验的固定曲面,该曲面在竖直面内的截面为抛物面,抛物面下端切线水平且恰好位于M轨道的圆心处,在如图所示的直角坐标系中,抛物面的方程为y=
1
2
x2(x、y的单位均为m),M的下端相切处放置竖直向上的弹簧枪,每次总将弹簧长度压缩到枪口下方距枪口d=0.5m处后发射质量不同的小钢珠.小钢珠的直径略小于枪管的直径,不计空气阻力的影响,假设某次发射的质量为m=0.01kg的小钢珠a沿轨道恰好能经过M的上端点,水平飞出后落到抛物面N的某一点上,取g=10m/s2
作业搜
(1)求发射该钢珠前,弹簧的弹性势能Ep
(2)求小钢珠a落到抛物面N上时的动能Ek(结果保留两位有效数字);
(3)若小钢珠b的质量为m1=0.005kg,问小钢珠b能否到达M的上端点?若能,则求出此小钢珠b在最高点时对M的压力大小.
▼优质解答
答案和解析
(1)设小钢珠a在M轨道最高点时的速度为v,在最高点时有:mg=m
v2
R

得 v=
10
m/s
从发射到最高点,由系统的机械能守恒得:Ep=mg(d+R)+
1
2
mv2
代人数据解得:Ep=0.4J
(2)钢珠a从最高点飞出后做平抛运动,则有:
   x=vt
   h=
1
2
gt2
据题,由几何关系有  R-h=
1
2
x2
联立解得 h=0.5m
从M的最高点到打到N点的过程,由机械能守恒得:
  mgh+
1
2
mv2=Ek
代人数据解得:Ek=0.10J
(3)假设小钢珠b能到达M的上端点,设b到达M的上端点速度为vb
根据机械能守恒定律得:
  Ep=m1g(d+R)+
1
2
m1vb2
代人数据解得:vb=2
10
m/s>v=
10
m/s
所以小钢珠b能到达M的上端点.
在M的上端点时,由牛顿第二定律有
  m1g+N=m1
v
2
b
R

解得 N=0.15N
根据牛顿第三定律知,小钢珠b在最高点时对M的压力大小是0.15N.
答:
(1)发射该钢珠前,弹簧的弹性势能Ep是0.4J.
(2)小钢珠a落到抛物面N上时的动能Ek是0.10J;
(3)若小钢珠b的质量为m1=0.005kg,小钢珠b能到达M的上端点,小钢珠b在最高点时对M的压力大小是0.15N.
看了 如图所示是为了检验某种防护罩...的网友还看了以下: