早教吧作业答案频道 -->数学-->
如图1,在平面直角坐标系中,已知点A(0,6).点B(6,6),点C(6,0),点D是射线OA(O,A除外)上的动点,点E是O点关于直线CD的对称点,延长DE交直线AB于点F,连结CF.(1)某探究小组
题目详情
如图1,在平面直角坐标系中,已知点A(0,6).点B(6,6),点C(6,0),点D是射线OA(O,A除外)上的动点,点E是O点关于直线CD的对称点,延长DE交直线AB于点F,连结CF.
(1)某探究小组发现:当点D在线段OA上时,有①EF=BF;②∠DCF=45°,请选择其中一个证明.
(2)当AD=2时,求点F的坐标.
(3)探究小组又发现:如图2.当点D在线段OA上时,射线CD、CF与射线OB分别交于点M,N,线段OM,MN,BN之间除了存在OM+MN+NB=6
外,还存在着另外的等式关系,你能找到并写出这个等式吗?当点D不在线段OA上时,这两个等式是否仍然成立?请说明理由.

(1)某探究小组发现:当点D在线段OA上时,有①EF=BF;②∠DCF=45°,请选择其中一个证明.
(2)当AD=2时,求点F的坐标.
(3)探究小组又发现:如图2.当点D在线段OA上时,射线CD、CF与射线OB分别交于点M,N,线段OM,MN,BN之间除了存在OM+MN+NB=6
| 2 |

▼优质解答
答案和解析
(1)证明:如图1中,

∵O、E关于CD对称,
∴OD=DE,OC=CE=CB,∠DCE=∠DCO,
∵CF=CF,
∴Rt△CFE≌Rt△CFB,
∴EF=BF,∠FCE=∠FCB,
∴∠DCF=∠DCE+∠FCE=
∠ECO+
∠ECB=
∠OCB=45°,
∴FE=FB,∠DCF=45°.
(2) 如图1中,
∵AD=2,
∴OD=DE=4,设EFF=FB=x,则AF=6-x,
在Rt△ADF中,∵AD2+AF2=DF2
∴22+(6-x)2=(4+x)2,
∴x=
.
(3) ①如图2中,当当D在线段OA上时,结论:MN2=OM2+NB2.

理由:将△OCM绕点C顺时针旋转90°,得到△CBP.
∵∠DCF=45°,
∴∠OCM+∠BCN=45°,
∵∠OCM=∠BCP,
∴∠NCB+∠BCP=45°,
∴∠MCN=∠NCP,∵CN=CN,CM=CP,
∴△CNM≌△CNP,
∴MN=PN,
∵∠OBC=∠CBP=45°,
∴∠MBP=90°,
∴BN2+BP2=PN2,
∴MN2=OM2+NB2.
②如图3中,当点D在线段OA的延长线上时,第一个结论变了:OM+MN-BN=6
.理由:OM+MN-BN=OB=6
.
第二个结论不变,理由如下:

理由:将△OCM绕点C顺时针旋转90°,得到△CBP.
易证∠DCO=∠DCE,∠FCE=∠FCB,
∴∠DCF=∠DCE-∠FCE=
∠OCE-
∠BCE=
(∠OCE-∠BCE)=45°,
∴∠OCM-∠BCN=45°,
∵∠OCM=∠BCP,
∴∠NCP=∠BCP-∠BCN=45°,
∴∠MCN=∠NCP=45°,
∵CN=CN,CM=CP,
∴△CNM≌△CNP,
∴MN=PN,
∵∠OBC=∠CBP=45°,
∴∠MBP=90°,
∴BN2+BP2=PN2,
∴MN2=OM2+NB2.

∵O、E关于CD对称,
∴OD=DE,OC=CE=CB,∠DCE=∠DCO,
∵CF=CF,
∴Rt△CFE≌Rt△CFB,
∴EF=BF,∠FCE=∠FCB,
∴∠DCF=∠DCE+∠FCE=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴FE=FB,∠DCF=45°.
(2) 如图1中,
∵AD=2,
∴OD=DE=4,设EFF=FB=x,则AF=6-x,
在Rt△ADF中,∵AD2+AF2=DF2
∴22+(6-x)2=(4+x)2,
∴x=
| 6 |
| 5 |
(3) ①如图2中,当当D在线段OA上时,结论:MN2=OM2+NB2.

理由:将△OCM绕点C顺时针旋转90°,得到△CBP.
∵∠DCF=45°,
∴∠OCM+∠BCN=45°,
∵∠OCM=∠BCP,
∴∠NCB+∠BCP=45°,
∴∠MCN=∠NCP,∵CN=CN,CM=CP,
∴△CNM≌△CNP,
∴MN=PN,
∵∠OBC=∠CBP=45°,
∴∠MBP=90°,
∴BN2+BP2=PN2,
∴MN2=OM2+NB2.
②如图3中,当点D在线段OA的延长线上时,第一个结论变了:OM+MN-BN=6
| 2 |
| 2 |
第二个结论不变,理由如下:

理由:将△OCM绕点C顺时针旋转90°,得到△CBP.
易证∠DCO=∠DCE,∠FCE=∠FCB,
∴∠DCF=∠DCE-∠FCE=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴∠OCM-∠BCN=45°,
∵∠OCM=∠BCP,
∴∠NCP=∠BCP-∠BCN=45°,
∴∠MCN=∠NCP=45°,
∵CN=CN,CM=CP,
∴△CNM≌△CNP,
∴MN=PN,
∵∠OBC=∠CBP=45°,
∴∠MBP=90°,
∴BN2+BP2=PN2,
∴MN2=OM2+NB2.
看了 如图1,在平面直角坐标系中,...的网友还看了以下:
若曲线y=f(x)=x³-3ax²-3a²+a (a大于0)上有两点A(m,f(m)) B(n,f 2020-05-17 …
已知函数f(x)=ax^3+bx²,曲线y=f(x)过点P(-1,2),且在点P处的切线恰好与直线 2020-05-21 …
已知函数f(x)=x^2-x-161,求f(x)的单调区间2.求f(x)在[1/2,3]区间上的最 2020-06-06 …
四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在 2020-06-11 …
如图,正方形ABCD中,将∠BAD绕点A顺时针旋转,角的两边分别交CD边于点E,CB边的延长线点F 2020-06-19 …
己知抛物线与x轴交于A-1,0B3,0两点,与y轴交于0,1.E是线段BC上一个动点(与点B,C不 2020-06-19 …
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成 2020-07-04 …
已知抛物线C:y^2=4x的焦点为F,直线L经过点F且与抛物线C相交于点A,B.已知抛物线C:y^ 2020-07-29 …
设函数f(x)在区间[a,b]上连续,且在(a,b)内有f′(x)>0,证明:在(a,b)内存在唯 2020-08-02 …
已知函数f(x)=ex-12x2,设l为曲线y=f(x)在点P(x0,f(x0))处的切线,其中x0 2020-10-31 …