早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)>0的解集是()A.(-3,0)∪(3,+∞)B.(-3,0)∪(0

题目详情
设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式
f(x)
g(x)
>0的解集是(  )
A. (-3,0)∪(3,+∞)
B. (-3,0)∪(0,3)
C. (-∞,-3)∪(3,+∞)
D. (-∞,-3)∪(0,3)
▼优质解答
答案和解析
设F(x)=f (x)g(x),
当x<0时,∵F′(x)=f′(x)g(x)+f (x)g′(x)>0,
∴F(x)在(-∞,0)上为增函数;
∵F(-x)=f (-x)g (-x)=-f (x)•g (x)=-F(x),
∴F(x)为R上的奇函数,故F(x)在R上亦为增函数.
∵g(-3)=0,必有F(-3)=F(3)=0.
构造如图的F(x)=f (x)g(x)的图象,

可知F(x)>0的解集为(-3,0)∪(3,+∞).
f(x)
g(x)
>0⇔
f(x)•g(x)
g2(x)
>0⇔F(x)>0,
f(x)
g(x)
>0的解集就是F(x)>0的解集(-3,0)∪(3,+∞).
故选A.