早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图1是甲,乙两个圆形水槽(2011•扬州)如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽中的水匀

题目详情
如图1是甲,乙两个圆形水槽
(2011•扬州)如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽中的水匀速注人乙槽,甲、乙两个水槽中水的深度y(厘米>与注水时间x(分钟)之间的关系如图2所示.根据图象提供的信息,
(1)图2中折线ABC表示
乙乙
槽中水的深度与注水时间之间的关系,线段DE表示
甲甲
槽中水的深度与注水时间之间的关系(以上两空选塡“甲”或“乙”),点B的纵坐标表示的实际意义是
乙槽中铁块的高度为14cm乙槽中铁块的高度为14cm

(2)注水多长时间时,甲、乙两个水槽中水的深度相同?
(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;
(4)若乙槽中铁块的体积为112立方厘米,求甲槽底面积(壁厚不计).(直接写成结果)
第4题的(36×19-112)÷12=60cm^2,不是去掉铁块还有2cm高的水吗,那些事原来的水,不是甲倒过来的,但网上很多答案像这个式子一样,一起除了12,还是我理解错了?
▼优质解答
答案和解析
(1)乙;甲;乙槽中铁块的高度为14cm;
(2)设线段AB、DE的解析式分别为:y1=k1x+b1,y2=k2x+b2,
∵AB经过点(0,2)和(4,14),DE经过(0,12)和(6,0)
∴b1=24k1+b1=14​,
解得 k1=3b1=2​,
b2=126k2+b2=0​,
解得:k2=-2b2=12​,
∴解析式为y=3x+2和y=-2x+12,
令3x+2=-2x+12,
解得x=2,
∴当2分钟时两个水槽水面一样高.
(3)由图象知:当水槽中没铁块时4分钟水面上升了12cm,即1分钟上升3cm,
当水面没过铁块时,2分钟上升了5cm,即1分钟上升2.5cm,
设铁块的底面积为acm2,
则乙水槽中不放铁块的体积分别为:2.5×36cm2,
放了铁块的体积为3×(36-a)cm3,
∴3×(36-a)=2.5×36,
解得a=6,
∴铁块的体积为:6×14=84cm3.
(4)60cm2.
∵铁块的体积为112cm3,
∴铁块的底面积为112÷14=8cm2,
可设甲槽的底面积为m,乙槽的底面积为n,则根据前4分钟和后2分钟甲槽中流出的水的体积和乙槽中流入的水的体积分别相等列二元一次方程组12(n-8)=8m5n=4m​
解得:m=60cm2
看了 如图1是甲,乙两个圆形水槽(...的网友还看了以下: