早教吧作业答案频道 -->其他-->
非齐次线性方程组Ax=b中未知数的个数为n,方程个数为m,系数矩阵A的秩为r,则()A.r=m时,方程组Ax=b有解B.r=n时,方程组Ax=b有唯一解C.m=n时,方程组Ax=b有唯一解D.r<n时,方程组Ax
题目详情
非齐次线性方程组Ax=b中未知数的个数为n,方程个数为m,系数矩阵A的秩为r,则( )
A.r=m时,方程组Ax=b有解
B.r=n时,方程组Ax=b有唯一解
C.m=n时,方程组Ax=b有唯一解
D.r<n时,方程组Ax=b有无穷多解
A.r=m时,方程组Ax=b有解
B.r=n时,方程组Ax=b有唯一解
C.m=n时,方程组Ax=b有唯一解
D.r<n时,方程组Ax=b有无穷多解
▼优质解答
答案和解析
解;
∵线性方程组Ax=b有解⇔r(A)=r(Ab),
并且由题知A是m行n列的矩阵,
①对于选项A.
若r(A)=m,
则A是一个行满秩矩阵,
因此在A的每一行后面添加一个分量,得到矩阵(A b)的m个行向量,并不会改变它的秩,即r(A b)=m,
从而:r(A)=r(A b)=m,
故当r=m时,方程组Ax=b有解,
∴选项A正确.
②对于选项B.
如:A=
,(A b)=
,
显然 r(A)=2(未知数个数),但r(A)<r(A b)=3,此时方程组无解,
∴选项B错误.
③对于选项C.
如:A=
,(A b)=
,
显然r(A)=r(A b)=1<2,此时Ax=b有无穷多解,
∴选项C错误.
④对于选项D.
如:A=
,(A b)=
,
显然r(A)=1<r(A b)=2,此时Ax=b无解,
∴选项D错误.
故选:A.
∵线性方程组Ax=b有解⇔r(A)=r(Ab),
并且由题知A是m行n列的矩阵,
①对于选项A.
若r(A)=m,
则A是一个行满秩矩阵,
因此在A的每一行后面添加一个分量,得到矩阵(A b)的m个行向量,并不会改变它的秩,即r(A b)=m,
从而:r(A)=r(A b)=m,
故当r=m时,方程组Ax=b有解,
∴选项A正确.
②对于选项B.
如:A=
|
|
显然 r(A)=2(未知数个数),但r(A)<r(A b)=3,此时方程组无解,
∴选项B错误.
③对于选项C.
如:A=
|
|
显然r(A)=r(A b)=1<2,此时Ax=b有无穷多解,
∴选项C错误.
④对于选项D.
如:A=
|
|
显然r(A)=1<r(A b)=2,此时Ax=b无解,
∴选项D错误.
故选:A.
看了 非齐次线性方程组Ax=b中未...的网友还看了以下:
设lim(x->X)f(x)=∞,且x->X时,g(x)的主部是f(x)证明lim(x->X)g( 2020-04-26 …
设lim(x->X)f(x)=∞,且x->X时,g(x)的主部是f(x)证明lim(x->X)g( 2020-05-12 …
定义在R上的函数满足f(x)=-f(x+2),且当x属于(-1,1]时,f(x)=x平方+2x1, 2020-05-17 …
函数奇偶性的问题!这里有一道题,题目说已知f(x)是R上的偶函数,当X属于(0,正无穷)时f(x) 2020-06-03 …
解方程x的平方-x的绝对值-2=0。解:(1)当x大于等于0时,原方程化为x的平方-x-2=0.解 2020-07-20 …
函数xy/(根号下x^2+y^2)条件是x^2+y^2不等于零时,当x^2+y2等于零时,函数值为 2020-08-01 …
函数奇偶性判断可以用代入法吗?设函数f(x)对于任意x,y属于R,都有f(x+y)=f(x)+f( 2020-08-01 …
已知函数f(x)=lnx-a(x-1)/(x>0)(1)讨论函数f(x)的单调性(2)当X大于等于 2020-08-01 …
有关函数单调性与导数的关系对可导函数f(x)的对应导数f'(x)由高三公式可得解析式.若f(x)有 2020-08-01 …
设有线性方程组λx−y−z=1−x+λy−z=−λ−x−y+λz=λ2,问λ取何值时,此方程组(1 2020-08-03 …