早教吧作业答案频道 -->数学-->
证明1+1/2+1/3+……+1/n没有极限
题目详情
证明1+1/2+1/3+……+1/n没有极限
▼优质解答
答案和解析
Sn=1+1/2 + (1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) +...[1/(2^n+1) +...+ 1/2^(n+1)]
> 1+ 1/2 + 2*(1/4) + 4*(1/8) + 2^n*[1/2^(n+1)]
=1 + 1/2 + n*(1/2)
=(n+3)/2
因此sn不收敛,去括号得到原式也不收敛.
> 1+ 1/2 + 2*(1/4) + 4*(1/8) + 2^n*[1/2^(n+1)]
=1 + 1/2 + n*(1/2)
=(n+3)/2
因此sn不收敛,去括号得到原式也不收敛.
看了 证明1+1/2+1/3+……...的网友还看了以下: