早教吧作业答案频道 -->数学-->
如图,A、B分别是x轴和y轴上的点,以AB为直径作⊙M,过M点作AB的垂线交⊙M于点C,C在双曲线y=kx(x<0)上,若OA-OB=4,则k的值是.
题目详情
如图,A、B分别是x轴和y轴上的点,以AB为直径作⊙M,过M点作AB的垂线交⊙M于点C,C在双曲线y=
(x<0)上,若OA-OB=4,则k的值是______.

k |
x |

▼优质解答
答案和解析
作CD⊥x轴于D,CE⊥y轴于E,连结AC、BC,如图,
∵AB为⊙M的直径,
∴∠ACB=90°,
又∵CM⊥AB,
∴△ACB为等腰直角三角形,
∴CA=CB,AB=
BC,
∵∠CAO=∠CBO,
∵在△ACD和△BCE中
,
∴△ACD≌△BCE(AAS),
∴CD=CE,
设C点坐标为(-t,t),A点坐标为(a,0),B点坐标为(0,b),
∵OA-OB=4,即-a-(-b)=4,
∴a=b-4,
∴a2=(b-4)2=b2-8b+16①,
∵AB2=a2+b2,BC2=CE2+BE2,
∴
(a2+b2)=t2+(t-b)2②,
由①②得t2-4-bt+2b=0,
∴(t+2)(t-2)-b(t-2)=0,
∴(t-2)(t+2-b)=0,
而t+2-b≠0,
∴t-2=0,解得t=2,
∴C点坐标为(-2,2),
把C(-2,2)代入y=
得k=-2×2=-4.
故答案为-4.

∵AB为⊙M的直径,
∴∠ACB=90°,
又∵CM⊥AB,
∴△ACB为等腰直角三角形,
∴CA=CB,AB=
2 |
∵∠CAO=∠CBO,
∵在△ACD和△BCE中
|
∴△ACD≌△BCE(AAS),
∴CD=CE,
设C点坐标为(-t,t),A点坐标为(a,0),B点坐标为(0,b),
∵OA-OB=4,即-a-(-b)=4,
∴a=b-4,
∴a2=(b-4)2=b2-8b+16①,
∵AB2=a2+b2,BC2=CE2+BE2,
∴
1 |
2 |
由①②得t2-4-bt+2b=0,
∴(t+2)(t-2)-b(t-2)=0,
∴(t-2)(t+2-b)=0,
而t+2-b≠0,
∴t-2=0,解得t=2,
∴C点坐标为(-2,2),
把C(-2,2)代入y=
k |
x |
故答案为-4.
看了 如图,A、B分别是x轴和y轴...的网友还看了以下:
作出天圆地方的展开图按1:5比例,标注实际尺寸;圆直径∮273,方头尺寸200*300,高度300 2020-04-08 …
如图,△ABC的三个顶点坐标分别是A(-1,2),B(-1.5,0),C(0,1),分别作出△AB 2020-05-13 …
用尺规作图线段垂直平分线的依据是什么? 2020-05-14 …
matlab中数组作图---线段(颜色交替)一堆离散的数据,能否把它合成一条,不同颜色的线段?根据 2020-05-16 …
MATLAB 作图 h=[0:300]; v=2.18025*(h-0.6)*sqrt(h/0.3 2020-05-16 …
(1)点P(3,-3)到直线l:4x-3y-4=0的距离是(2)作直线l1:x-y+1=0与l2: 2020-06-03 …
如图.圆0为三角形ABc的外接圆.Bc为圆0的直径,作射线BF,使BA平分角cBF.过点A作AD垂 2020-07-30 …
按1:1的比例完成线段连接,标出连接弧圆心和切点(保留作图线)——小圆平行过来的是R30,大圆向左 2020-07-31 …
尺规作图线段的垂直平分线的原理 2020-08-02 …
初中物理里哪些作图线要用虚线画光线?力臂? 2020-12-05 …