早教吧作业答案频道 -->数学-->
如图,在平面直角坐标系中,点A、B在x轴上,点C、D在y轴上,且OB=OC=3,OA=OD=1,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点,直线AD与抛物线交于另一点M.(1)求这条抛物线的解析式;(2)P为
题目详情
如图,在平面直角坐标系中,点A、B在x轴上,点C、D在y轴上,且OB=OC=3,OA=OD=1,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点,直线AD与抛物线交于另一点M.

(1)求这条抛物线的解析式;
(2)P为抛物线上一动点,E为直线AD上一动点,是否存在点P,使以点A、P、E为顶点的三角形为等腰直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.
(3)请直接写出将该抛物线沿射线AD方向平移
个单位后得到的抛物线的解析式.

(1)求这条抛物线的解析式;
(2)P为抛物线上一动点,E为直线AD上一动点,是否存在点P,使以点A、P、E为顶点的三角形为等腰直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.
(3)请直接写出将该抛物线沿射线AD方向平移
2 |
▼优质解答
答案和解析
(1)根据题意得,A(1,0),D(0,1),B(-3,0),C(0,-3).
抛物线经过点A(1,0),B(-3,0),C(0,-3),则有:
,
解得
,
∴抛物线的解析式为:y=x2+2x-3.
(2)存在.
△APE为等腰直角三角形,有三种可能的情形:
①以点A为直角顶点.
如解答图,过点A作直线AD的垂线,与抛物线交于点P,与y轴交于点F.
∵OA=OD=1,则△AOD为等腰直角三角形,
∵PA⊥AD,则△OAF为等腰直角三角形,∴OF=1,F(0,-1).
设直线PA的解析式为y=kx+b,将点A(1,0),F(0,-1)的坐标代入得:
,
解得k=1,b=-1,
∴y=x-1.
将y=x-1代入抛物线解析式y=x2+2x-3得,x2+2x-3=x-1,
整理得:x2+x-2=0,
解得x=-2或x=1,
当x=-2时,y=x-1=-3,
∴P(-2,-3);
②以点P为直角顶点.
此时∠PAE=45°,因此点P只能在x轴上或过点A与y轴平行的直线上.
过点A与y轴平行的直线,只有点A一个交点,故此种情形不存在;
因此点P只能在x轴上,而抛物线与x轴交点只有点A、点B,故点P与点B重合.
∴P(-3,0);
③以点E为直角顶点.此时∠EAP=45°,由②可知,此时点P只能与点B重合,点E位于直线AD与对称轴的交点上,即P(-3,0);
综上所述,存在点P,使以点A、P、E为顶点的三角形为等腰直角三角形.点P的坐标为(-2,-3)或(-3,0).
(3)抛物线的解析式为:y=x2+2x-3=(x+1)2-4.
抛物线沿射线AD方向平移
个单位,相当于向左平移1个单位,并向上平移一个单位,
∴平移后的抛物线的解析式为:y=(x+1+1)2-4+1=x2+4x+1.

抛物线经过点A(1,0),B(-3,0),C(0,-3),则有:
|
解得
|
∴抛物线的解析式为:y=x2+2x-3.
(2)存在.
△APE为等腰直角三角形,有三种可能的情形:
①以点A为直角顶点.
如解答图,过点A作直线AD的垂线,与抛物线交于点P,与y轴交于点F.
∵OA=OD=1,则△AOD为等腰直角三角形,
∵PA⊥AD,则△OAF为等腰直角三角形,∴OF=1,F(0,-1).
设直线PA的解析式为y=kx+b,将点A(1,0),F(0,-1)的坐标代入得:
|
解得k=1,b=-1,
∴y=x-1.
将y=x-1代入抛物线解析式y=x2+2x-3得,x2+2x-3=x-1,
整理得:x2+x-2=0,
解得x=-2或x=1,
当x=-2时,y=x-1=-3,
∴P(-2,-3);
②以点P为直角顶点.
此时∠PAE=45°,因此点P只能在x轴上或过点A与y轴平行的直线上.
过点A与y轴平行的直线,只有点A一个交点,故此种情形不存在;
因此点P只能在x轴上,而抛物线与x轴交点只有点A、点B,故点P与点B重合.
∴P(-3,0);
③以点E为直角顶点.此时∠EAP=45°,由②可知,此时点P只能与点B重合,点E位于直线AD与对称轴的交点上,即P(-3,0);
综上所述,存在点P,使以点A、P、E为顶点的三角形为等腰直角三角形.点P的坐标为(-2,-3)或(-3,0).
(3)抛物线的解析式为:y=x2+2x-3=(x+1)2-4.
抛物线沿射线AD方向平移
2 |
∴平移后的抛物线的解析式为:y=(x+1+1)2-4+1=x2+4x+1.
看了 如图,在平面直角坐标系中,点...的网友还看了以下:
不同的风向产生不同性质的气团,不同的气团相遇产生不同性质的锋面系统,不同的锋面系统造成的天气现象又 2020-05-14 …
系统的综合要求有下列4个方面:()、系统性能要求、运行要求和将来可能提出的要求。A.系统功能要求B. 2020-05-24 …
系统的综合要求有下列4个方面:()、系统性能要求、运行要求和将来可能捉出的要求。A.系统功能要求B. 2020-05-24 …
如图,在平面直角坐标系内,已知A(1,0),B(-1,0)两点,且圆C的方程为x2+y2-6x-8 2020-07-24 …
求四棱台体积时,只有下底面面积,边坡系数,不知道上平面面积求四棱台体积怎么求?底面尺寸30*40m 2020-07-31 …
已知f(x)=(1+x)m+(1+2x)n(m,n∈N*)的展开式中x的系数为11.(1)求x2的 2020-07-31 …
在平面直角坐标系中,已知四点,把坐标系平面沿轴折为直二面角.(1)求证:;(2)求平面和平面的夹角 2020-08-02 …
选修4-4:坐标系与参数方程(Ⅰ)求直线(为参数)的倾斜角的大小.(Ⅱ)在极坐标系中,已知点,是曲 2020-08-02 …
如图所示,倾角为α的光滑斜面体上有一个小球m被平行于斜面的细绳系于斜面上,斜面体放在水平面上.(1) 2020-11-01 …
财政收入与财政支出()A.是积累与消费的关系B.是初次分配与再次分配的关系C.是财政分配的两个方面D 2020-11-27 …