早教吧作业答案频道 -->数学-->
已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y轴相交于点C,且点A,C在一次函数y2=43x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变
题目详情
已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y轴相交于点C,且点A,C在一次函数y2=
x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.
| 4 | 
| 3 | 
▼优质解答
答案和解析
根据OC长为8可得一次函数中的n的值为8或-8.
分类讨论:①n=8时,易得A(-6,0)如图1,
∵抛物线经过点A、C,且与x轴交点A、B在原点的两侧,
∴抛物线开口向下,则a<0,
∵AB=16,且A(-6,0),
∴B(10,0),而A、B关于对称轴对称,
∴对称轴直线x=
=2,
要使y1随着x的增大而减小,且a<0,
∴x≥2;
②n=-8时,易得A(6,0),如图2,
∵抛物线过A、C两点,且与x轴交点A,B在对称轴两侧,
∴抛物线开口向上,则a>0,
∵AB=16,且A(6,0),
∴B(-10,0),而A、B关于对称轴对称,
∴对称轴直线x=
=-2,
要使y1随着x的增大而减小,且a>0,
∴x≤-2.
综上所述,x≥2或x≤-2.
根据OC长为8可得一次函数中的n的值为8或-8.分类讨论:①n=8时,易得A(-6,0)如图1,
∵抛物线经过点A、C,且与x轴交点A、B在原点的两侧,
∴抛物线开口向下,则a<0,
∵AB=16,且A(-6,0),
∴B(10,0),而A、B关于对称轴对称,
∴对称轴直线x=
| −6+10 | 
| 2 | 
要使y1随着x的增大而减小,且a<0,
∴x≥2;
②n=-8时,易得A(6,0),如图2,
∵抛物线过A、C两点,且与x轴交点A,B在对称轴两侧,
∴抛物线开口向上,则a>0,
∵AB=16,且A(6,0),
∴B(-10,0),而A、B关于对称轴对称,
∴对称轴直线x=
| 6−10 | 
| 2 | 
要使y1随着x的增大而减小,且a>0,
∴x≤-2.
综上所述,x≥2或x≤-2.
 看了 已知抛物线y1=ax2+bx...的网友还看了以下:
抛物线为二次函数y=x2-2x-3的图像,它与x轴相交于A、B两点(点A在点B的左侧),与y轴相交 2020-05-16 …
如图,抛物线y=(x+m)2+m,与直线y=-x相交于E,C两点(点E在点C的左边),抛物线与x轴 2020-06-12 …
如图1,直线y=-34x+3与x轴相交于点A,与y轴相交于点B,点C(m,n)是第二象限内任意一点 2020-06-12 …
如图半径为2的圆P在第一象限内与x轴y轴相切切点分别为AB圆P的另一条切线MN与圆P相切于点C与x 2020-06-14 …
如图所示.直线y=x+2与y轴相交于点A,OB1=OA,以OB1为底边作等腰三角形A1OB1,顶点 2020-07-09 …
(2013•包头)已知抛物线y=x2-3x-74的顶点为点D,并与x轴相交于A、B两点(点A在点B 2020-07-17 …
初二数学题,急!已知函数y=二分之一x—3的图像是直线l1,l1与y轴相交于点A,与x轴相交于点B 2020-07-19 …
如图.过点A1(1,0)作x轴的垂线,交直线y=2x于点B1;点A2与点O关于直线A1B1对称,过点 2020-10-31 …
如图,直线l1:y=k1x+b1(k≠0)分别与x轴、y轴相交于点A(-5,0)和点B(0,2),直 2020-10-31 …
(2014•大连)如图,抛物线y=a(x-m)2+2m-2(其中m>1)与其对称轴l相交于点P,与y 2021-01-09 …