早教吧作业答案频道 -->数学-->
设函数f(x)=x3-tx+t-12,t∈R(1)试讨论函数f(x)在区间0,1上的单调性;(2)求最小的实设函数f(x)=x3-tx+(t-1)/2,t∈R(1)试讨论函数f(x)在区间0,1上的单调性;(2)求最小的实数h,使得对任
题目详情
设函数f(x)=x3-tx+ t-1 2 ,t∈R(1)试讨论函数f(x)在区间【0,1】上的单调性;(2)求最小的实
设函数f(x)=x3-tx+(t-1)/2,t∈R(1)试讨论函数f(x)在区间【0,1】上的单调性;(2)求最小的实数h,使得对任意x∈[0,1]及任意实数t,f(x)+|(t-1)/2|+h≥0恒成立.
设函数f(x)=x3-tx+(t-1)/2,t∈R(1)试讨论函数f(x)在区间【0,1】上的单调性;(2)求最小的实数h,使得对任意x∈[0,1]及任意实数t,f(x)+|(t-1)/2|+h≥0恒成立.
▼优质解答
答案和解析
f'(x)=3x²-t
(1)若t≤0,则f'(x)≥0,所以 f(x)在R上是增函数,当然,在[0,1]上也是增函数;
(2)若t>0,令f'(x)≥0,解得x≤-(√3t)/3或x≥(√3t)/3,
即f(x)在(-∞,-(√3t)/3 ]和[(√3t)/3,+∞)上是增函数;
同理在[-(√3t)/3,(√3t)/3]上是减函数.
所以
①当0
(1)若t≤0,则f'(x)≥0,所以 f(x)在R上是增函数,当然,在[0,1]上也是增函数;
(2)若t>0,令f'(x)≥0,解得x≤-(√3t)/3或x≥(√3t)/3,
即f(x)在(-∞,-(√3t)/3 ]和[(√3t)/3,+∞)上是增函数;
同理在[-(√3t)/3,(√3t)/3]上是减函数.
所以
①当0
看了 设函数f(x)=x3-tx+...的网友还看了以下:
函数f(x)在(0,+∞)连续,f(1)=5/2,对所有x,t∈(0,+∞),满足∫(1,x)f( 2020-05-19 …
已知函数f(x)=x^2+mx+n的图像过点(1,3),且f(-1+x)=(-1-x)对任意实数都 2020-06-08 …
有关导数与微分概念命题?若f(x+1)=af(x)总成立,且f'(0)=b,a,b为非零常数,则f 2020-06-10 …
1、设偶函数f(x)对任意x属于R,都有f(x+3)=-f(x)分之1,且当x属于-3,-2时,则 2020-07-18 …
高中数学函数求详解:已知2f(1/x)+f(x)=x(x≠0),求f(x).答案上写的是:∵f(x 2020-07-21 …
已知集合M={f(x)|f(-x)=f(x),x∈R};N={f(x)|f(-x)=-f(x),x 2020-07-30 …
已知定义在(0,+∞)上的函数f(x)满足:1.对于任意的x,y∈(0,+∞)都有f(x+y)=f 2020-08-01 …
f(x)=x^2,求f/(1)(注:f(1+△x)-f(1)是分子△x是分母打不出下划线)f/(1) 2020-11-01 …
f(1-x/1+x)=x,f(x)的表达式是---f(1/f(x))=1/x,f(x)的表达式具体解 2020-12-13 …
最近被一个问题搞糊涂了已知f'(x)=lnx/(1+x)那么f'(1/x)=ln(1/x)/[1+( 2020-12-28 …