早教吧 育儿知识 作业答案 考试题库 百科 知识分享

代数式(2x+1)5的运算可以转化为五个多项式(2x+1)•(2x+1)•(2x+1)•(2x+1)•(2x+1)相乘,按多项式乘法法则,展开合并同类项后其乘积为:a5x5+a4x4+a3x3+a2x2+a1x+a0,其中a5、a4、a3、a2、a1、a0为乘积展开

题目详情
代数式(
2
x+1)5的运算可以转化为五个多项式(
2
x+1)•(
2
x+1)•(
2
x+1)•(
2
x+1)•(
2
x+1)相乘,按多项式乘法法则,展开合并同类项后其乘积为:a5x5+a4x4+a3x3+a2x2+a1x+a0,其中a5、a4、a3、a2、a1、a0为乘积展开式各项的系数,因此,(
2
x+1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0
(1)求a0与a5的值;
(2)求(a0+a2+a42-(a1+a3+a52的值.
▼优质解答
答案和解析
(1)∵(
2
x+1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0
令x=0,得到a0=1.
∵a5是x5的系数,
∴a5=(
2
5=4
2


(2)∵(
2
x+1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0在上述等式中:
当x=1时,(
2
+1)5=a5+a4+a3+a2+a1+a0
当x=-1时,(-
2
+1)5=-a5+a4-a3+a2-a1+a0
又∵(a0+a2+a42-(a1+a3+a52
=(a0+a1+a2+a3+a4+a5)•(a0-a1+a2-a3+a4-a5),
=(
2
+1)5(-
2
+1)5
=(1-2)5
=-1.