早教吧作业答案频道 -->数学-->
一道数列题(有些难哦)象斐波那契数列一样,一项的数值等于前两项数值之和,如:1,1,2,3,5,8,13...现在给出首项为a,第二项为b,求通项公式An.要详尽推算步骤,同志们不要犯weilan271的错误:第6项
题目详情
▼优质解答
答案和解析
楼主请注意看!我引用了以上几位兄台的一些回复,但是不是简单抄袭,请看完,
落叶狂风扫提出:
著名的裴波那契数列.其特点为 某一项 = 它的前2项之和
其通项公式为 Fn = {[(1+√5)/2]^n-[(1-√5)/2]^n}/√5
程欣炜又提出:
如果前两项是1、1,就是二楼的公式.
这说明通项公式为 Fn = {[(1+√5)/2]^n-[(1-√5)/2]^n}/√5 只适用于首项和第二项为1的标准裴波那契数列.
然后,从weilan271的回复得到启发(虽然他的回答错得挺远):
第1项为a
第2项为b
第3项为a+b
第4项为b+a+b=a+2b
第5项为a+b+a+2b=2a+3b
第6项为a+2b+2a+3b=3a+5b
第7项为2a+3b+3a+5b=5a+8b
………………
不难发现:从第二项开始,b的系数是裴波那契数列;从第三项开始,a的系数是裴波那契数列.那么,通项公式为:
An=a (n=1)
An=a{[(1+√5)/2]^(n-2)-[(1-√5)/2]^(n-2)}/√5 + b{[(1+√5)/2]^(n-1)-[(1-√5)/2]^(n-1)}/√5 (n=2,3,4,5,6……)
然后发现,当n=1时,通项公式也成立,因此通项公式为:
An=a{[(1+√5)/2]^(n-2)-[(1-√5)/2]^(n-2)}/√5 + b{[(1+√5)/2]^(n-1)-[(1-√5)/2]^(n-1)}/√5 (n为自然数)
落叶狂风扫提出:
著名的裴波那契数列.其特点为 某一项 = 它的前2项之和
其通项公式为 Fn = {[(1+√5)/2]^n-[(1-√5)/2]^n}/√5
程欣炜又提出:
如果前两项是1、1,就是二楼的公式.
这说明通项公式为 Fn = {[(1+√5)/2]^n-[(1-√5)/2]^n}/√5 只适用于首项和第二项为1的标准裴波那契数列.
然后,从weilan271的回复得到启发(虽然他的回答错得挺远):
第1项为a
第2项为b
第3项为a+b
第4项为b+a+b=a+2b
第5项为a+b+a+2b=2a+3b
第6项为a+2b+2a+3b=3a+5b
第7项为2a+3b+3a+5b=5a+8b
………………
不难发现:从第二项开始,b的系数是裴波那契数列;从第三项开始,a的系数是裴波那契数列.那么,通项公式为:
An=a (n=1)
An=a{[(1+√5)/2]^(n-2)-[(1-√5)/2]^(n-2)}/√5 + b{[(1+√5)/2]^(n-1)-[(1-√5)/2]^(n-1)}/√5 (n=2,3,4,5,6……)
然后发现,当n=1时,通项公式也成立,因此通项公式为:
An=a{[(1+√5)/2]^(n-2)-[(1-√5)/2]^(n-2)}/√5 + b{[(1+√5)/2]^(n-1)-[(1-√5)/2]^(n-1)}/√5 (n为自然数)
看了一道数列题(有些难哦)象斐波那...的网友还看了以下:
一道数列题(有些难哦)象斐波那契数列一样,一项的数值等于前两项数值之和,如:1,1,2,3,5,8, 2020-03-29 …
斐波那切数列前n项和Sn的通项公式是什么? 2020-04-09 …
如何求斐波那切数列的通项公式除待定系数法以外的方法 2020-04-09 …
为什么有些数列没有通项公式?11235812.从第三项起系前两项之和著名的斐波那契数列 2020-06-06 …
斐波那契数列的通项公式是怎么求出来的? 2020-06-25 …
斐波那契数列通项公式证明方法要通项公式的最好多种方法谢谢要有步骤的~~~~~~~~~ 2020-07-23 …
斐波那契数列通项公式的证明谁能用数学归纳法证明这个通项公式的? 2020-07-23 …
斐波那契数列第2008项是多少?不要公式“斐波那契数列”是意大利数学家列昂纳多·斐波那契首先研究的 2020-07-23 …
已知数列a{n}中,a1=3,a10=21,通项an是项数n的一次函数(1)求{an}的通项公式,并 2020-10-31 …
下列各组词语中没有错误的一项是A.斐翠倒坍历尽心血B.蹲踞酬和贯川古今C.夜宵熹微油光可鉴D.蓬蒿攫 2020-12-02 …