早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在数列an中,A1=1,A(n+1)=(1+1/n)An+(n+1)/2,设Bn=An/n,求数列Bn的通项公式.

题目详情
在数列an中,A1=1,A(n+1)=(1+1/n)An+(n+1)/2,设Bn=An/n,求数列Bn的通项公式.
▼优质解答
答案和解析
在递推式 A(n+1) = (n+1)An/n + (n+1)/2 两边同时除以 n+1 得到:
A(n+1)/(n+1) = An/n + 1/2.因为 Bn=An/n,所以又有 B(n+1) = Bn + 1/2.
从而数列{Bn}是以 B1=A1/1=1 为首项,1/2 为公差的等差数列,因此{Bn}的通项公式为 Bn=B1+(n-1)*(1/2)=(n+1)/2.即 Bn=(n+1)/2.