早教吧作业答案频道 -->数学-->
已知a+b>0,n∈正整数、且为偶数,证明 b^(n-1)/a^n+a^(n-1)/b^n>=1/a+1/b
题目详情
已知a+b>0,n∈正整数、且为偶数,证明 b^(n-1)/a^n+a^(n-1)/b^n>=1/a+1/b
▼优质解答
答案和解析
用排序不等式做最快
由a+b>0 不妨设a>b 若b为负数 显然|a|>|b| 又n为正偶数
故a^n>b^n
故1/a^nb n-1为奇数 故有b^(n-1)=a^(n-1)/a^n+b^(n-1)/b^n=1/a+1/b=右边
当且仅当a=b时取等号
故不等式成立
背景知识:
排序不等式是高中数学竞赛大纲、新课标 要求的基本不等式.
设有两组数 a 1 ,a 2 ,…… a n,b 1 ,b 2 ,…… b n 满足 a 1 ≤ a 2 ≤……≤ a n,b 1 ≤ b 2 ≤……≤ b n 则有 a 1 b n + a 2 b n+……+ a n b n≤ a 1 b t + a 2 b t +……+ a n b t ≤ a 1 b 1 + a 2 b 2 + a n b n 式中t1,t2,……,tn是1,2,……,n的任意一个排列,当且仅当 a 1 = a 2 =……= a n 或 b 1 = b 2 =……= b n 时成立.
排序不等式常用于与顺序无关的一组数乘积的关系.可以先令a1>=a2>=a3>=...>=an,确定大小关系.
使用时常构造一组数,使其与原数构成乘积关系,适用于分式、乘积式尤其是轮换不等式的证明.
以上排序不等式也可简记为:反序和≤乱序和≤同序和.
由a+b>0 不妨设a>b 若b为负数 显然|a|>|b| 又n为正偶数
故a^n>b^n
故1/a^nb n-1为奇数 故有b^(n-1)=a^(n-1)/a^n+b^(n-1)/b^n=1/a+1/b=右边
当且仅当a=b时取等号
故不等式成立
背景知识:
排序不等式是高中数学竞赛大纲、新课标 要求的基本不等式.
设有两组数 a 1 ,a 2 ,…… a n,b 1 ,b 2 ,…… b n 满足 a 1 ≤ a 2 ≤……≤ a n,b 1 ≤ b 2 ≤……≤ b n 则有 a 1 b n + a 2 b n+……+ a n b n≤ a 1 b t + a 2 b t +……+ a n b t ≤ a 1 b 1 + a 2 b 2 + a n b n 式中t1,t2,……,tn是1,2,……,n的任意一个排列,当且仅当 a 1 = a 2 =……= a n 或 b 1 = b 2 =……= b n 时成立.
排序不等式常用于与顺序无关的一组数乘积的关系.可以先令a1>=a2>=a3>=...>=an,确定大小关系.
使用时常构造一组数,使其与原数构成乘积关系,适用于分式、乘积式尤其是轮换不等式的证明.
以上排序不等式也可简记为:反序和≤乱序和≤同序和.
看了 已知a+b>0,n∈正整数、...的网友还看了以下:
设集合A={a,a²,b²-1}B={0,|a|,b},且A=B 求a,b值设集合A={a,a², 2020-04-05 …
利用等比数列的前n项和的公式证明:如果a不等于b,且a,b都不为0,则a^n+a^(n-1)b+a 2020-05-13 …
已知向量a,b且a,b满足|ka+b|=|a-kb|,(1)求a与b的数量积用k表示的解析式;(2 2020-05-14 …
能判定△ABC与△A'B'C'相似的条件是( )A.A'B'分之AB=A'C'分之AC B. 2020-05-16 …
函数f(x)=x^2+aln(x+1) 求f(x)的单调区间 若函数F(x)=f(x)+ln(根号 2020-05-16 …
如果a=b,且a,b>0,则1=2[证明]1.a,b>02.a=b3.ab=bb4.ab-aa=b 2020-07-09 …
证明A+B的行列式为零已知有n阶矩阵A,B,且A^2=E=B^2,det(A)+det(B)=0, 2020-07-20 …
已知两条直线a、b及平面α有四个命题:①若a∥b且a∥α则b∥α;②若a⊥α且b⊥α则a∥b;③若a 2020-11-02 …
有个家伙竟然证明了1=2!快进来发现他的错误.条件:若a=b.且a,b>0,则1=2.证明:①a,b 2020-11-13 …
已知直线a,b和平面α,下列推理错误的是()A.a⊥α且b⊂α⇒a⊥bB.a∥b且a⊥α⇒b⊥αC. 2020-12-23 …