早教吧作业答案频道 -->数学-->
利用k^(k+1)>(k+1)^k (k≥3)证明:(k+1)^(k+2)>(k+2)^(k+1)次数太高,无法化简,望高手赐教,
题目详情
利用k^(k+1)>(k+1)^k (k≥3)证明:
(k+1)^(k+2)>(k+2)^(k+1)
次数太高,无法化简,望高手赐教,
(k+1)^(k+2)>(k+2)^(k+1)
次数太高,无法化简,望高手赐教,
▼优质解答
答案和解析
这种类型的题通常用取对数来降次
证明:
∵k^(k+1)>(k+1)^k
∴(k+1)lnk>kln(k+1)
∴k[lnk-ln(k+1)]+lnk>0
∴kln[k/(k+1)]+lnk>0 .(1)
又(k+1)^2=k+2k+1>k+2k=k(k+2)
∴(k+1)/(k+2)>k/(k+1)
∴ln[(k+1)/(k+2)]>ln[k/(k+1)].(2)
∴(k+1)ln[(k+1)/(k+2)]+ln(k+1)
=kln[(k+1)/(k+2)]+ln(k+1)+ln[(k+1)/(k+2)]
=kln[(k+1)/(k+2)]+lnk+ln(k+1)-lnk+ln[(k+1)/(k+2)] 第一个对数的真数即式(2)的左边
>{kln[k/(k+1)]+lnk}+ln[(k+1)/k]+ln[(k+1)/(k+2)] 大括号里即式(1)的左边
>ln[(k+1)/k]+ln[(k+1)/(k+2)]
=ln[(k+1)^2/k(k+2)] 因为(k+1)^2=k+2k+1>k+2k=k(k+2),所以真数>1
>0
即(k+2)ln(k+1)-(k+1)ln(k+2)>0
∴(k+2)ln(k+1)>(k+1)ln(k+2)
∴(k+1)^(k+2)>(k+2)^(k+1)
证毕
证明:
∵k^(k+1)>(k+1)^k
∴(k+1)lnk>kln(k+1)
∴k[lnk-ln(k+1)]+lnk>0
∴kln[k/(k+1)]+lnk>0 .(1)
又(k+1)^2=k+2k+1>k+2k=k(k+2)
∴(k+1)/(k+2)>k/(k+1)
∴ln[(k+1)/(k+2)]>ln[k/(k+1)].(2)
∴(k+1)ln[(k+1)/(k+2)]+ln(k+1)
=kln[(k+1)/(k+2)]+ln(k+1)+ln[(k+1)/(k+2)]
=kln[(k+1)/(k+2)]+lnk+ln(k+1)-lnk+ln[(k+1)/(k+2)] 第一个对数的真数即式(2)的左边
>{kln[k/(k+1)]+lnk}+ln[(k+1)/k]+ln[(k+1)/(k+2)] 大括号里即式(1)的左边
>ln[(k+1)/k]+ln[(k+1)/(k+2)]
=ln[(k+1)^2/k(k+2)] 因为(k+1)^2=k+2k+1>k+2k=k(k+2),所以真数>1
>0
即(k+2)ln(k+1)-(k+1)ln(k+2)>0
∴(k+2)ln(k+1)>(k+1)ln(k+2)
∴(k+1)^(k+2)>(k+2)^(k+1)
证毕
看了 利用k^(k+1)>(k+1...的网友还看了以下:
///////证明 3^n-2^m=(2^k-3^n)a (n m k为自然数 a为大于的整数 n 2020-05-16 …
试证明:ΣC(i,k)(i=0,1,……,k)=2^k,(k∈Z+).这里ΣC(i,k)(i=0, 2020-06-12 …
概率题,高手帮忙做下已知X的分布律为P(X=k)=ae*-k+2(k=1,2,3...),求常数a 2020-06-20 …
利用k^(k+1)>(k+1)^k (k≥3)证明:(k+1)^(k+2)>(k+2)^(k+1) 2020-06-27 …
matlab能手进~t=[0.250.50.7511.522.533.544.5567891011 2020-07-23 …
1.用数学归纳法证明f(n)=1+(1/2)+(1/3)+.+1/(2^n)的过程中,从n=k到n 2020-08-01 …
已知,用数学归纳法证明f(2n)>f()时,f(2k+1)-f(2k)已知f(n)=1+1/2+1 2020-08-03 …
an=n^(n+1),bn=(n+1)^n比较大小并证明用数学归纳法这样证明是对的吗?当n=1时, 2020-08-03 …
证明:1/(x+1)+1(x+2)…+1/(3n+1)>=1证明:当n=1时,1/2+1/3+1/4 2020-12-23 …
设集合M={x|x=(kπ/2)+(π/4),k∈Z},N={x|x=(kπ/4)+(π设集合M={ 2021-01-13 …