早教吧 育儿知识 作业答案 考试题库 百科 知识分享

F(X)=2asin^x-2√3asinx*cosx+b的定义域为[0,兀/2],值域为[-5,4],求a,b

题目详情
F(X)=2asin^x-2√3asinx*cosx+b的定义域为[0,兀/2],值域为[-5,4],求a,b
▼优质解答
答案和解析
F(X)=2asin^x-2√3asinx*cosx+b
=a(2sin^x-2√3sinx*cosx)+b
=a(3sin^x-2√3sinx*cosx+cos^x-1)+b
=a(√3sinx-cosx)^2-a+b
=4a[(√3/2)sinx-(1/2)cosx]^2-a+b
=4a[sin(x-兀/6)]^2-a+b
0≤x≤兀/2
-兀/6≤x-兀/6≤兀/3
b-a≤F(X)≤2a+b
-5≤F(X)≤4
b-a=-5
2a+b=4
a=3
b=-2
看了 F(X)=2asin^x-2...的网友还看了以下: