早教吧作业答案频道 -->数学-->
高一三角恒等变形的有关问题1..在三角形ABC中,若sinAsingC=(cosA/2)^2,则三角形ABC是?答案等腰三角形2.已知sinα=cos2α,α∈(π/2,π),则cotα的值为?答案根号33.已知α,β为锐角,且sinα-sinβ=-&
题目详情
高一三角恒等变形的有关问题
1..在三角形ABC中,若sinAsingC=(cosA/2)^2,则三角形ABC是?【答案等腰三角形】
2.已知sinα=cos2α,α∈(π/2,π),则cotα的值为?【答案根号3】
3.已知α,β为锐角,且sinα-sinβ=-½,cosα-cosβ=½,则tan(α-β)的值为?【答案-根号7/3】
1..在三角形ABC中,若sinAsingC=(cosA/2)^2,则三角形ABC是?【答案等腰三角形】
2.已知sinα=cos2α,α∈(π/2,π),则cotα的值为?【答案根号3】
3.已知α,β为锐角,且sinα-sinβ=-½,cosα-cosβ=½,则tan(α-β)的值为?【答案-根号7/3】
▼优质解答
答案和解析
1、
[cos(A/2)]^2=(cosA+1)/2
因此原式可化为
2sinAsinC=cosA+1
令A=30°
很容易得到
sinC=1+(1/2)根号3
实际上sinC不可能大于一
因此我有足够的理由楼主给的题目错了
根据我做题的过程
如果我没猜错的话
楼主的题目应该是
在三角形ABC中,若sinBsinC=(cosA/2)^2,则三角形ABC是
如果用积化和差公式
解法如下:
[cos(A/2)]^2=(cosA+1)/2
因此原式可化为
2sinBsinC=cosA+1
2sinBsinC-(cosA+1)
=2sinBsinC-(-cos(π-(B+C))+1)
=2sinBsinC+cos(B+C)-1
=2sinBsinC+cosBcosC-sinBsinC-1
=cosBcosC+sinBsinC-1
=cos(B-C)-1
=0
因此cos(B-C)=1
又因为B和C在三角形中
因此B-C=0
B=C
因此三角形ABC是等腰三角形
如果用积化和差公式来解
解法如下
sinαsinβ = [cos(α-β)-cos(α+β)] /2
则2sinAsinB=cos(B-C)-cos(B+C)=cosA+1
即
cos(B-C)-cos(B+C)=-cos(B+C)+1
即cos(B-C)=1
可得B=C
第二题%%%%%%%%%%%%%%%%%%%%
cos2α=(cosα)^2-(sinα)^2=1-2(sinα)^2
因此
sinα=1-2(sinα)^2
即2(sinα)^2-sinα-1=0
即(2sinα-1)(sinα+1)=0
解得sinα=1/2或者sinα=-1
又α∈(π/2,π),
因此
sinα=1/2
解得
α=30°
因此
cotα=cot30°=根号3
第三题%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
(sinα-sinβ)^2+(cosα-cosβ)^2
=(sinα)^2+(sinβ)^2-2sinαsinβ+(cosα)^2+(cosβ)^2-2cosαcosβ
=2-2sinαsinβ-2cosαcosβ
=1/2
则cosαcosβ+sinαsinβ=1-1/4=3/4
即cos(α-β)=3/4
又α,β为锐角,
且由题得
sinαcosβ
因此α-β
[cos(A/2)]^2=(cosA+1)/2
因此原式可化为
2sinAsinC=cosA+1
令A=30°
很容易得到
sinC=1+(1/2)根号3
实际上sinC不可能大于一
因此我有足够的理由楼主给的题目错了
根据我做题的过程
如果我没猜错的话
楼主的题目应该是
在三角形ABC中,若sinBsinC=(cosA/2)^2,则三角形ABC是
如果用积化和差公式
解法如下:
[cos(A/2)]^2=(cosA+1)/2
因此原式可化为
2sinBsinC=cosA+1
2sinBsinC-(cosA+1)
=2sinBsinC-(-cos(π-(B+C))+1)
=2sinBsinC+cos(B+C)-1
=2sinBsinC+cosBcosC-sinBsinC-1
=cosBcosC+sinBsinC-1
=cos(B-C)-1
=0
因此cos(B-C)=1
又因为B和C在三角形中
因此B-C=0
B=C
因此三角形ABC是等腰三角形
如果用积化和差公式来解
解法如下
sinαsinβ = [cos(α-β)-cos(α+β)] /2
则2sinAsinB=cos(B-C)-cos(B+C)=cosA+1
即
cos(B-C)-cos(B+C)=-cos(B+C)+1
即cos(B-C)=1
可得B=C
第二题%%%%%%%%%%%%%%%%%%%%
cos2α=(cosα)^2-(sinα)^2=1-2(sinα)^2
因此
sinα=1-2(sinα)^2
即2(sinα)^2-sinα-1=0
即(2sinα-1)(sinα+1)=0
解得sinα=1/2或者sinα=-1
又α∈(π/2,π),
因此
sinα=1/2
解得
α=30°
因此
cotα=cot30°=根号3
第三题%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
(sinα-sinβ)^2+(cosα-cosβ)^2
=(sinα)^2+(sinβ)^2-2sinαsinβ+(cosα)^2+(cosβ)^2-2cosαcosβ
=2-2sinαsinβ-2cosαcosβ
=1/2
则cosαcosβ+sinαsinβ=1-1/4=3/4
即cos(α-β)=3/4
又α,β为锐角,
且由题得
sinαcosβ
因此α-β
看了 高一三角恒等变形的有关问题1...的网友还看了以下:
用蝶恋花,青玉案和昨夜西风凋碧树,独上西楼望尽天涯路写出学习的三种境界的构思蝶恋花中的诗句是:衣带渐 2020-03-30 …
一道三相电路的问题题目如下图所示下图中,在第一题的参考答案中的R=4/3XL是怎么得到的?还有,最后 2020-03-31 …
推理,A,B,C三人因涉嫌一件谋杀案被传讯.这三人中,一人是凶手,一人是帮凶,还有年个是无辜的人. 2020-05-16 …
几何概型----取一个边长为a的正三角形机器内奇缘,随机地向三角形内丢一粒豆子,求“豆子落在圆上” 2020-05-17 …
作图题:(1)用四块如下图①所示的瓷砖拼成一个正方形,使拼成的图案成轴对称,请你在图②、图③、图④ 2020-05-17 …
离散推理与证明习题公安人员审问了一起盗窃案,查明了以下事实:(1)罪犯就是A,B,C三人中的一个或 2020-06-14 …
如图所示是由若干盆花组成的三角形图标,每条边(包括顶点)有n(n>1)盆花,每个图案花盆总数为S. 2020-08-01 …
如图,在5×4正方形网格中,有A,B,C三个格点.试在图中再找出一个格点D,满足:D与A,B,C三 2020-08-03 …
2016年4月5日,国家旅游局公布了清明小长假期间旅游投诉和近期典型案件的查处情况。曾引起社会广泛关 2020-11-06 …
7名班委中有ABC三人,有7种不同职务,若正副班长两职至少要选ABC三人中的1人担任,有多少种方案? 2020-11-10 …