早教吧作业答案频道 -->数学-->
高一三角恒等变形的有关问题1..在三角形ABC中,若sinAsingC=(cosA/2)^2,则三角形ABC是?答案等腰三角形2.已知sinα=cos2α,α∈(π/2,π),则cotα的值为?答案根号33.已知α,β为锐角,且sinα-sinβ=-&
题目详情
高一三角恒等变形的有关问题
1..在三角形ABC中,若sinAsingC=(cosA/2)^2,则三角形ABC是?【答案等腰三角形】
2.已知sinα=cos2α,α∈(π/2,π),则cotα的值为?【答案根号3】
3.已知α,β为锐角,且sinα-sinβ=-½,cosα-cosβ=½,则tan(α-β)的值为?【答案-根号7/3】
1..在三角形ABC中,若sinAsingC=(cosA/2)^2,则三角形ABC是?【答案等腰三角形】
2.已知sinα=cos2α,α∈(π/2,π),则cotα的值为?【答案根号3】
3.已知α,β为锐角,且sinα-sinβ=-½,cosα-cosβ=½,则tan(α-β)的值为?【答案-根号7/3】
▼优质解答
答案和解析
1、
[cos(A/2)]^2=(cosA+1)/2
因此原式可化为
2sinAsinC=cosA+1
令A=30°
很容易得到
sinC=1+(1/2)根号3
实际上sinC不可能大于一
因此我有足够的理由楼主给的题目错了
根据我做题的过程
如果我没猜错的话
楼主的题目应该是
在三角形ABC中,若sinBsinC=(cosA/2)^2,则三角形ABC是
如果用积化和差公式
解法如下:
[cos(A/2)]^2=(cosA+1)/2
因此原式可化为
2sinBsinC=cosA+1
2sinBsinC-(cosA+1)
=2sinBsinC-(-cos(π-(B+C))+1)
=2sinBsinC+cos(B+C)-1
=2sinBsinC+cosBcosC-sinBsinC-1
=cosBcosC+sinBsinC-1
=cos(B-C)-1
=0
因此cos(B-C)=1
又因为B和C在三角形中
因此B-C=0
B=C
因此三角形ABC是等腰三角形
如果用积化和差公式来解
解法如下
sinαsinβ = [cos(α-β)-cos(α+β)] /2
则2sinAsinB=cos(B-C)-cos(B+C)=cosA+1
即
cos(B-C)-cos(B+C)=-cos(B+C)+1
即cos(B-C)=1
可得B=C
第二题%%%%%%%%%%%%%%%%%%%%
cos2α=(cosα)^2-(sinα)^2=1-2(sinα)^2
因此
sinα=1-2(sinα)^2
即2(sinα)^2-sinα-1=0
即(2sinα-1)(sinα+1)=0
解得sinα=1/2或者sinα=-1
又α∈(π/2,π),
因此
sinα=1/2
解得
α=30°
因此
cotα=cot30°=根号3
第三题%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
(sinα-sinβ)^2+(cosα-cosβ)^2
=(sinα)^2+(sinβ)^2-2sinαsinβ+(cosα)^2+(cosβ)^2-2cosαcosβ
=2-2sinαsinβ-2cosαcosβ
=1/2
则cosαcosβ+sinαsinβ=1-1/4=3/4
即cos(α-β)=3/4
又α,β为锐角,
且由题得
sinαcosβ
因此α-β
[cos(A/2)]^2=(cosA+1)/2
因此原式可化为
2sinAsinC=cosA+1
令A=30°
很容易得到
sinC=1+(1/2)根号3
实际上sinC不可能大于一
因此我有足够的理由楼主给的题目错了
根据我做题的过程
如果我没猜错的话
楼主的题目应该是
在三角形ABC中,若sinBsinC=(cosA/2)^2,则三角形ABC是
如果用积化和差公式
解法如下:
[cos(A/2)]^2=(cosA+1)/2
因此原式可化为
2sinBsinC=cosA+1
2sinBsinC-(cosA+1)
=2sinBsinC-(-cos(π-(B+C))+1)
=2sinBsinC+cos(B+C)-1
=2sinBsinC+cosBcosC-sinBsinC-1
=cosBcosC+sinBsinC-1
=cos(B-C)-1
=0
因此cos(B-C)=1
又因为B和C在三角形中
因此B-C=0
B=C
因此三角形ABC是等腰三角形
如果用积化和差公式来解
解法如下
sinαsinβ = [cos(α-β)-cos(α+β)] /2
则2sinAsinB=cos(B-C)-cos(B+C)=cosA+1
即
cos(B-C)-cos(B+C)=-cos(B+C)+1
即cos(B-C)=1
可得B=C
第二题%%%%%%%%%%%%%%%%%%%%
cos2α=(cosα)^2-(sinα)^2=1-2(sinα)^2
因此
sinα=1-2(sinα)^2
即2(sinα)^2-sinα-1=0
即(2sinα-1)(sinα+1)=0
解得sinα=1/2或者sinα=-1
又α∈(π/2,π),
因此
sinα=1/2
解得
α=30°
因此
cotα=cot30°=根号3
第三题%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
(sinα-sinβ)^2+(cosα-cosβ)^2
=(sinα)^2+(sinβ)^2-2sinαsinβ+(cosα)^2+(cosβ)^2-2cosαcosβ
=2-2sinαsinβ-2cosαcosβ
=1/2
则cosαcosβ+sinαsinβ=1-1/4=3/4
即cos(α-β)=3/4
又α,β为锐角,
且由题得
sinαcosβ
因此α-β
看了 高一三角恒等变形的有关问题1...的网友还看了以下:
一辆公交车沿一直线运动,它以2m/s 初速度开始做加速度大小为2m/s^2的匀加速直线运动,运动了 2020-05-16 …
一辆公交车从甲站以a1=1m/s^2的加速度匀加速出站a₁=1m/s² v₁=50m/s a₂=- 2020-05-16 …
火车以1m/s^2的加速度,在水平轨道上匀加速行驶,车厢中一乘客把手伸到窗外,从距离地面2.5m高 2020-05-16 …
某车以30m/s的初速度以5m/s^2的加速度刹车1刹车2s内汽车位移2.刹车20s内的汽车位移3 2020-05-17 …
甲乙两车同时从同一地点同一方向出发,甲以V1=16m/s的初速度,a1=2m/s^2的加速度做匀减 2020-05-21 …
一架梯子长2.5m,重200N,假设质量分布是均匀的.梯子的下端距墙脚1.5m,上端靠在竖直墙面上 2020-06-14 …
弹簧上挂着一个质量m=1kg的物体,在下列各种情况下,弹簧秤的示数各为多少?(取g=10m/s^2 2020-07-08 …
为了求1+2+2的平方+2的立方+...+2的100次方的值,可令S=1+2+2的平方+2的立方+ 2020-07-17 …
x/340m/s-x/5200m/s=2的解答过程 2020-07-19 …
1+s+s^2的反拉氏变换sorry写错了是1/1+s+s^2的反拉氏变换 2020-11-08 …