早教吧 育儿知识 作业答案 考试题库 百科 知识分享

函数f(x)=(x-5)x^(2/3)的拐点是多少,

题目详情
函数f(x)=(x-5)x^(2/3)的拐点是多少,
▼优质解答
答案和解析
f(x)=x^(5/3)-5x^(2/3)
f'(x)=(5/3)x^(2/3)-5*(2/3)x^(-1/3)
f''(x)=(5/3)(2/3)x^(-1/3)-5(2/3)(-1/3)x^(-4/3)=(10/9)x^(-1/3)+(10/9)x^(-4/3)=0
令t=x^(-1/3),则有t+t^4=0,即t(1+t^3)=0
∵t≠0(1除以三次根号下x 肯定不等于0吧),∴只能1+t^3=0,t=-1,∴1/[x^(1/3)]=-1,x=(-1)^3=-1
此时f(x)=(-1-5)(-1)^(2/3)=-6 拐点即为(-1,-6)
看了 函数f(x)=(x-5)x^...的网友还看了以下: