早教吧作业答案频道 -->其他-->
goingbananas快要发疯了.这个英语有什么起源?为什么是这个意思?
题目详情
going bananas快要发疯了.这个英语有什么起源?为什么是这个意思?
▼优质解答
答案和解析
因为香蕉有让人疯狂的魅力,就像猴子见到香蕉一样.还有一种说法,有种用香蕉酿造的酒喝了会叫人魂不知处,所以就有了going bananas 一说.
看了 goingbananas快要...的网友还看了以下:
利用等比数列的前n项和的公式证明:如果a不等于b,且a,b都不为0,则a^n+a^(n-1)b+a 2020-05-13 …
在数列{a(n)},{b(n)}中,a(1)=2,b(1)=4,且a(n),b(n),a(n+1) 2020-05-22 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
立方差公式的推广证明过程(1)a^n-b^n=(a-b)[a^(n-1)+a^(n-2)*b+.. 2020-07-11 …
用a^n-b^n=(a-b)(a^(n-1)+a^(n-2)*b+...+ab^(n-2)+b^( 2020-07-14 …
若a,b均为正实数,m,n属于N,且a>b,则a的m次方+b的n次方与a的(m-n)次方b的n次方 2020-07-28 …
请问:二项式定理N不为整数的情况下,公式是怎样的?二项式定理a^n-b^n=(a-b)(a^(n- 2020-07-31 …
设A,B均为n阶方阵,且满足AB=Θ(零矩阵),则必有()A.A=Θ或B=ΘB.A+B=ΘC.|A| 2020-11-02 …
分解因式谁能给我讲解下!a^n+b^n=(a+b)([a^{n-1}]-[a^{n-2}]*b+[a 2020-11-20 …
公式难题...abcdefgn分别为不等的数值.a+b+n=?a+c+n=?a+d+n=?…………… 2020-11-28 …