早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知,△ABC是等边三角形,将一块含有30°角的直角三角板DEF如图放置,让三角板在BC所在的直线上向右平移,如图1,当点E与点B重合时,点A恰好落在三角形的斜边DF上.(1)利用图1证明:EF

题目详情
已知,△ABC是等边三角形,将一块含有30°角的直角三角板DEF如图放置,让三角板在BC所在的直线上向右平移,如图1,当点E与点B重合时,点A恰好落在三角形的斜边DF上.

(1)利用图1证明:EF=2BC;
(2)在三角板的平移过程中,在图2中线段EB=AH是否始终成立(假定AB,AC与三角板斜边的交点为G、H)?如果成立,请证明;如果不成立,请说明理由.
▼优质解答
答案和解析
(1)∵△ABC是等边三角形,
∴∠ACB=60°,AC=BC.
∵∠F=30°
∴∠CAF=60°-30°=30°.
∴∠CAF=∠F,
∴CF=AC,
∴CF=AC=EC,
∴EF=2BC.(4分)
(2)成立.       (1分)
∵△ABC是等边三角形,
∴∠ACB=60°,AC=BC.
∵∠F=30°
∴∠CHF=60°-30°=30°.
∴∠CHF=∠F,
∴CH=CF.
∵EF=2BC,
∴BE+CF=BC.
又∵AH+CH=AC,AC=BC,
∴AH=BE.(9分)