早教吧作业答案频道 -->其他-->
函数y=Asin(ωx+ϕ)(x∈R,A>0,ω>0,|ϕ|<π2)的图象上相邻的最高点与最低点的坐标分别为M(5π12,3),N(11π12,-3),(1)求此函数的解析式;(2)写出函数的单调区间.
题目详情
函数y=Asin(ωx+ϕ)(x∈R,A>0,ω>0,|ϕ|<
)的图象上相邻的最高点与最低点的坐标分别为M(
,3),N(
,-3),
(1)求此函数的解析式;
(2)写出函数的单调区间.
| π |
| 2 |
| 5π |
| 12 |
| 11π |
| 12 |
(1)求此函数的解析式;
(2)写出函数的单调区间.
▼优质解答
答案和解析
(1)由题意知,
=
π-
π=
,且A=3
∴T=π∴ω=
=2
∴函数y=3sin(2x+ϕ)
把x=
π,y=3代入上式得,3=3sin(
π+ϕ)
∴
π+ϕ=
+2kπ,k∈Z,
解得:ϕ=-
+2kπ,k∈Z,
又|ϕ|<
∴ϕ=-
∴函数解析式是y=3sin(2x-
),x∈R.
(2)因为2kπ-
≤2x-
≤2kπ+
,k∈Z,
所以kπ-
≤x≤kπ+
,k∈Z,
因为2kπ+
≤2x-
≤2kπ+
,k∈Z,
所以kπ+
≤x≤kπ+
,k∈Z,
所以函数的单调增区间为:[kπ-
,kπ+
],k∈Z,
调减区间为:[kπ+
,kπ+
],k∈Z.
| T |
| 2 |
| 11 |
| 12 |
| 5 |
| 12 |
| π |
| 2 |
∴T=π∴ω=
| 2π |
| T |
∴函数y=3sin(2x+ϕ)
把x=
| 5 |
| 12 |
| 5 |
| 6 |
∴
| 5 |
| 6 |
| π |
| 2 |
解得:ϕ=-
| π |
| 3 |
又|ϕ|<
| π |
| 2 |
| π |
| 3 |
∴函数解析式是y=3sin(2x-
| π |
| 3 |
(2)因为2kπ-
| π |
| 2 |
| π |
| 3 |
| π |
| 2 |
所以kπ-
| π |
| 12 |
| 5π |
| 12 |
因为2kπ+
| π |
| 2 |
| π |
| 3 |
| 3π |
| 2 |
所以kπ+
| 5π |
| 12 |
| 11π |
| 12 |
所以函数的单调增区间为:[kπ-
| π |
| 12 |
| 5π |
| 12 |
调减区间为:[kπ+
| 5π |
| 12 |
| 11π |
| 12 |
看了 函数y=Asin(ωx+ϕ)...的网友还看了以下:
已知一次函数的图象经过点A(2,3)和点B(-2,15)(1)求AB的函数表达式;并画出图象.(2 2020-04-08 …
一次函数的图象经过点(-3,-2)和(1,6),则(1)求y与x之间的函数关系式,并画出此函数的图 2020-04-08 …
已知函数y1=kx-2和y2=-3x+b相交于点A(2,-1)(1)求k、b的值,在同一坐标系中画 2020-06-12 …
(1)在同一平面直角坐标系中,分别画出一次函数y=3x+4、y=3x-2、y=x+1、y=x-3的 2020-06-14 …
如图,反比例函数y1=k/x与一次函数y2=ax+b的图象相交与A(3,1)和B(-1,m)(1) 2020-06-27 …
询问一道中学物理题一个杯子,里面装了半杯热水,拧紧盖子,过了一会后,盖子很难打开,解释这种现象,写 2020-07-03 …
设函数y=(x-1)[(k-1)x+(k-3)](k是常数).(1)当k取1和2时的函数y1和y2 2020-07-14 …
(2013•乐山市中区模拟)如图,点A(-2,n),B(1,-2)是一次函数y=kx+b的图象和反 2020-08-01 …
小敏学习了一次函数后,尝试着用相同的方法研究函数y=a|x-b|+c的图象和性质.(1)在给出的平面 2020-12-04 …
(1)根据画函数图象的步骤,在如图的直角坐标系中,画出函数y=|x|的图象;(2)求证:无论m取何值 2020-12-25 …