早教吧作业答案频道 -->数学-->
已知直线m,n相交于点B,点A,C分别为直线m,n上的点,AB=BC=1,且∠ABC=60°,点E是直线m上的一个动点,点D是直线n上的一个动点,运动过程中始终满足DE=CE.(1)如图1,当点E运动到线段AB的
题目详情
已知直线m,n相交于点B,点A,C分别为直线m,n上的点,AB=BC=1,且∠ABC=60°,点E是直线m上的一个动点,点D是直线n上的一个动点,运动过程中始终满足DE=CE.
(1)如图1,当点E运动到线段AB的中点,点D在线段CB的延长线上时,求BD的长.
(2)如图2,当点E在线段AB上运动,点D在线段CB的延长线上时,试确定线段BD与AE的数量关系,并说明理由.

(1)如图1,当点E运动到线段AB的中点,点D在线段CB的延长线上时,求BD的长.
(2)如图2,当点E在线段AB上运动,点D在线段CB的延长线上时,试确定线段BD与AE的数量关系,并说明理由.

▼优质解答
答案和解析
(1)∵∠ABC=60°,AB=BC,
∴△ABC为等边三角形,
∴∠ACB=60°,
∵点E是线段AB的中点,
∴∠ECB=
∠ACB=30°,
∵DE=CE,
∴∠EDB=∠ECB=30°,
∵∠ABC=∠EDB+∠DEB,
∴∠DEB=30°=∠EDB,
∴BD=DE=
AB=
;
(2)
BD=AE;理由如下:
过点E作EF∥BC交AC于点F,如图所示:
∵EF∥BC,
∴∠AFE=∠ACB=60°,
∴∠EFC=120°,∠AFE=∠A,
∴EF=EA,
∵∠ABC=60°,
∴∠EBD=120°,
∴∠EFC=∠EBD,
∵CE=DE,
∴∠EDB=∠ECB,
∵∠EDB+∠DEB=∠ECB+∠ECF=60°,
∴∠DEB=∠ECF,
在△EDB和△CEF中,
,
∴△EDB≌△CEF(AAS),
∴BD=EF,
∵EF=EA,
∴BD=AE.
∴△ABC为等边三角形,
∴∠ACB=60°,
∵点E是线段AB的中点,
∴∠ECB=
1 |
2 |
∵DE=CE,
∴∠EDB=∠ECB=30°,
∵∠ABC=∠EDB+∠DEB,
∴∠DEB=30°=∠EDB,
∴BD=DE=
1 |
2 |
1 |
2 |
(2)

过点E作EF∥BC交AC于点F,如图所示:
∵EF∥BC,
∴∠AFE=∠ACB=60°,
∴∠EFC=120°,∠AFE=∠A,
∴EF=EA,
∵∠ABC=60°,
∴∠EBD=120°,
∴∠EFC=∠EBD,
∵CE=DE,
∴∠EDB=∠ECB,
∵∠EDB+∠DEB=∠ECB+∠ECF=60°,
∴∠DEB=∠ECF,
在△EDB和△CEF中,
|
∴△EDB≌△CEF(AAS),
∴BD=EF,
∵EF=EA,
∴BD=AE.
看了 已知直线m,n相交于点B,点...的网友还看了以下:
正方体中证明三点共线,在正方体ABCD-A'B'C'D'中,点E、F分别是AA’、CC’的中点,连结 2020-03-30 …
真空中,两个相距L的固定电荷E、F所带电荷量分别为QE和QF,在它们共同形成的电场中,有一条电场线 2020-05-13 …
求解lim(n,+∞>1/n*(e^1/n+e^2/n+…+e^n/n)求详细解题过程谢谢求解li 2020-05-14 …
(2014•嘉定区一模)图为部分经纬线图,30°N纬线与120°E经线相交于A地,A、B、C、D、 2020-05-14 …
下图为部分经纬线图,30°N纬线与120°E经线相交于①地,①、②、③、④地位于同一经线圈上,且① 2020-05-14 …
求极限1:lim[(n-3)/(2n-1)]∧2.要解法 2:因为:lim[1+(1/n)]∧n= 2020-05-16 …
matlab函数调用问题,一个矩阵的自变量,怎么都是同一个答案function [ E ] = p 2020-05-16 …
1.若O(20°N,90°E)为太阳直射点,弧线EP、FP分别为晨线和昏线的一段,则 ( ) A. 2020-05-17 …
f(x)=e^x-kx,设函数F(x)=f(x)+f(-x),求证F(1)F(2)……F(n)>[ 2020-05-21 …
一角度的N等分画法,一直线、曲线、弧线的N等分画法 2020-06-06 …