早教吧作业答案频道 -->数学-->
12个球,难区分,11个同重,1个不等,有一没刻度,没砝码的天平,如只许称3次,怎能区分那个不同的球?
题目详情
12个球,难区分,11个同重,1个不等,有一没刻度,没砝码的天平,如只许称3次,怎能区分那个不同的球?
▼优质解答
答案和解析
答案:一
①②③④‖⑤⑥⑦⑧
Ⅰ、①②③④=⑤⑥⑦⑧ →次品在⑨⑩⑾⑿中,①②③④⑤⑥⑦⑧为标准球,记●
⑨⑩⑾‖●●●
一、⑨⑩⑾=●●● →次品为⑿
二、⑨⑩⑾>●●● →次品在⑨⑩⑾中,而且次品为重.
⑨‖⑩
⒈⑨=⑩ →次品为⑾
⒉⑨>⑩ →次品为⑨
⒊⑨<⑩ →次品为⑩
三、⑨⑩⑾<●●● →次品在⑨⑩⑾中,而且次品为轻.
⑨‖⑩
⒈⑨=⑩ →次品为⑾
⒉⑨>⑩ →次品为⑩
⒊⑨<⑩ →次品为⑨
Ⅱ、①②③④>⑤⑥⑦⑧ →次品在①②③④⑤⑥⑦⑧中,⑨⑩⑾⑿为标准球,记●
①②③⑤⑥‖④●●●●
一、①②③⑤⑥=④●●●● →次品在⑦⑧中,而且次品为轻.
⑦‖●
⒈⑦=● →次品为⑧
⒉⑦<● →次品为⑦
⒊不可能出现⑦>●
二、①②③⑤⑥>④●●●● →次品在①②③中,而且次品为重.
①‖②
⒈①=② →次品为③
⒉①<② →次品为②
⒊①>② →次品为①
三、①②③⑤⑥<④●●●● →次品在⑤(轻)⑥(轻)或④(重)中
④⑤‖●●
⒈④⑤=●● →次品为⑥
⒉④⑤<●● →次品为⑤
⒊④⑤>●● →次品为④
Ⅲ、①②③④>⑤⑥⑦⑧情况同Ⅱ.
(①②③④号码改为⑤⑥⑦⑧,⑤⑥⑦⑧号码改为①②③④,推理同Ⅱ)
注:‖为天平称称量.ⅠⅡⅢ为第一次称量情况分支,一二三为第二次称量情况分支⒈⒉⒊为第三次称量情况分支.标准球记●
答案:二
把12个球编成1,2.12号,则可设计下面的称法:
左盘 *** 右盘
第一次 1,5,6,12 *** 2,3,7,11
第二次 2,4,6,10 *** 1,3,8,12
第三次 3,4,5,11 *** 1,2,9,10
每次都可能有平、左重、右重三种结果,搭配起来共有27种结果,但平、平、平的结果不会出现,因为总有一个球是不相等的.同样左、左、左,右、右、右的结果也不回出现,因为根据设计的称法,没有一个球是三次都在左边或右边的.剩下的24种结果就可以判断出哪种情况是哪一个球了.例如:如果结果是平、平、左或是平、平、右,就可判断出是9号球,因为第一次与第二次都没有9号球,唯独第三次有9号球,而第一次与第二次都是平的,只有第三次是失衡的,说明9号球的重量与其它的球不同.可依据此原理判断出其它的各种情况分别是哪个球.
有12个球,而坏球又可能比好球轻也可能比好球重,所以总共有12x2=24种可能,24可能结果如下表:
1号球,且重 -左、右、右 1号球,且轻 -右、左、左
2号球,且重 -右、左、右 2号球,且轻 -左、右、左
3号球,且重 -右、右、左 3号球,且轻 -左、左、右
4号球,且重 -平、左、左 4号球,且轻 -平、右、右
5号球,且重 -左、平、左 5号球,且轻 -右、平、右
6号球,且重 -左、左、平 6号球,且轻 -右、右、平
7号球,且重 -右、平、平 7号球,且轻 -左、平、平
8号球,且重 -平、右、平 8号球,且轻 -平、左、平
9号球,且重 -平、平、右 9号球,且轻 -平、平、左
10号球,且重-平、左、右 10号球,且轻-平、右、左
11号球,且重-右、平、左 11号球,且轻-左、右、平
12号球,且重-左、右、平 12号球,且轻-左、右、平
上面的24种结果里面没有一个重复的,也可以把上面的结果反过来当成可能,也可唯一的推出那个球为坏球,证明此方法可行.
①②③④‖⑤⑥⑦⑧
Ⅰ、①②③④=⑤⑥⑦⑧ →次品在⑨⑩⑾⑿中,①②③④⑤⑥⑦⑧为标准球,记●
⑨⑩⑾‖●●●
一、⑨⑩⑾=●●● →次品为⑿
二、⑨⑩⑾>●●● →次品在⑨⑩⑾中,而且次品为重.
⑨‖⑩
⒈⑨=⑩ →次品为⑾
⒉⑨>⑩ →次品为⑨
⒊⑨<⑩ →次品为⑩
三、⑨⑩⑾<●●● →次品在⑨⑩⑾中,而且次品为轻.
⑨‖⑩
⒈⑨=⑩ →次品为⑾
⒉⑨>⑩ →次品为⑩
⒊⑨<⑩ →次品为⑨
Ⅱ、①②③④>⑤⑥⑦⑧ →次品在①②③④⑤⑥⑦⑧中,⑨⑩⑾⑿为标准球,记●
①②③⑤⑥‖④●●●●
一、①②③⑤⑥=④●●●● →次品在⑦⑧中,而且次品为轻.
⑦‖●
⒈⑦=● →次品为⑧
⒉⑦<● →次品为⑦
⒊不可能出现⑦>●
二、①②③⑤⑥>④●●●● →次品在①②③中,而且次品为重.
①‖②
⒈①=② →次品为③
⒉①<② →次品为②
⒊①>② →次品为①
三、①②③⑤⑥<④●●●● →次品在⑤(轻)⑥(轻)或④(重)中
④⑤‖●●
⒈④⑤=●● →次品为⑥
⒉④⑤<●● →次品为⑤
⒊④⑤>●● →次品为④
Ⅲ、①②③④>⑤⑥⑦⑧情况同Ⅱ.
(①②③④号码改为⑤⑥⑦⑧,⑤⑥⑦⑧号码改为①②③④,推理同Ⅱ)
注:‖为天平称称量.ⅠⅡⅢ为第一次称量情况分支,一二三为第二次称量情况分支⒈⒉⒊为第三次称量情况分支.标准球记●
答案:二
把12个球编成1,2.12号,则可设计下面的称法:
左盘 *** 右盘
第一次 1,5,6,12 *** 2,3,7,11
第二次 2,4,6,10 *** 1,3,8,12
第三次 3,4,5,11 *** 1,2,9,10
每次都可能有平、左重、右重三种结果,搭配起来共有27种结果,但平、平、平的结果不会出现,因为总有一个球是不相等的.同样左、左、左,右、右、右的结果也不回出现,因为根据设计的称法,没有一个球是三次都在左边或右边的.剩下的24种结果就可以判断出哪种情况是哪一个球了.例如:如果结果是平、平、左或是平、平、右,就可判断出是9号球,因为第一次与第二次都没有9号球,唯独第三次有9号球,而第一次与第二次都是平的,只有第三次是失衡的,说明9号球的重量与其它的球不同.可依据此原理判断出其它的各种情况分别是哪个球.
有12个球,而坏球又可能比好球轻也可能比好球重,所以总共有12x2=24种可能,24可能结果如下表:
1号球,且重 -左、右、右 1号球,且轻 -右、左、左
2号球,且重 -右、左、右 2号球,且轻 -左、右、左
3号球,且重 -右、右、左 3号球,且轻 -左、左、右
4号球,且重 -平、左、左 4号球,且轻 -平、右、右
5号球,且重 -左、平、左 5号球,且轻 -右、平、右
6号球,且重 -左、左、平 6号球,且轻 -右、右、平
7号球,且重 -右、平、平 7号球,且轻 -左、平、平
8号球,且重 -平、右、平 8号球,且轻 -平、左、平
9号球,且重 -平、平、右 9号球,且轻 -平、平、左
10号球,且重-平、左、右 10号球,且轻-平、右、左
11号球,且重-右、平、左 11号球,且轻-左、右、平
12号球,且重-左、右、平 12号球,且轻-左、右、平
上面的24种结果里面没有一个重复的,也可以把上面的结果反过来当成可能,也可唯一的推出那个球为坏球,证明此方法可行.
看了 12个球,难区分,11个同重...的网友还看了以下:
用刻度尺测量一张课桌的宽度,记录的数据是0.546米,这把刻度尺的分度值是()A.1米B.1分米C 2020-04-07 …
急.求1分半到2分钟的英语演讲稿.不用很难.求1分半到2分钟的英语演讲稿:1.whatcanchi 2020-05-14 …
量筒和量杯上刻度的单位是(mL).1毫升=1,1升=1;量筒上的刻度分布,量杯上的刻度分布. 2020-05-15 …
《爸爸妈妈,我想对您说》作文,要从爸妈怎么关心、爱护,我要怎么表达感谢之情等.立刻!1分钟以内! 2020-06-17 …
古代时间表述问题,每更分五点的话,每点就是24分钟,三更是23点到1点的话,三更三点应该是23点加 2020-06-30 …
5.默写(每空1分,共15分)1.李白《蜀道难》中用手可摘星的夸张手法写出山峰之高,同时把行人惶恐 2020-07-06 …
默写(共4分)(1),悠然见南山。(陶渊明《饮酒》)(1分)(2)长风破浪会有时,。(李白《行路难》 2020-12-04 …
一道数学难题在某时刻1.6米高的人的影长为2米此时距离墙2米远的大树的影子落在墙上的部分为1米求这棵 2020-12-24 …
容量瓶的精确度为什么是0.01?容量瓶不是只有一条刻度线吗?怎么会精确到0.01呢?..量筒精确度0 2021-01-08 …
指针式水表上刻度的问题1方水就是1吨,1000千克,但表上有几个刻度,分别是,0.1,0.01,0. 2021-02-01 …