早教吧作业答案频道 -->数学-->
已知函数f(x)=-x^2+2ex+m-1,g(x)=x+(e^2)/x(x>0)(1)若函数h(x)=g(x)-m有零点,求m的取值范围(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根
题目详情
已知函数f(x)=-x^2+2ex+m-1,g(x)=x+(e^2)/x (x>0)(1)若函数h(x)=g(x)-m有零点,求m的取值范围(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根
▼优质解答
答案和解析
(1)方法一:∵g(x)=x+e^2/x ≥2e^2=2e,等号成立的条件是x=e.
故g(x)的值域是[2e,+∞),
因而只需m≥2e,则g(x)=m就有实根.
故m的取值范围是{m|m≥2e}.
方法二:解方程由g(x)=m,得x^2-mx+e^2=0.
此方程有大于零的根,
故 m/2 >0
△=m^2-4e^2≥0 ,
等价于 m>0
m≥2e或m≤-2e ,
故m≥2e.
故m的取值范围是{m|m≥2e}.
(2)若g(x)-f(x)=0有两个相异的实根,
即g(x)=f(x)中,函数g(x)与f(x)的图象有两个不同的交点,
作出g(x)=x+e^2/x (x>0)的图象,
∵f(x)=-x^2+2ex+m-1
= --(x-e)^2+m-1+e^2,
其对称轴为x=e,开口向下,最大值为m-1+e^2,
故当m-1+e^2>2e,
即m>-e^2+2e+1时,
g(x)与f(x)的图象有两个不同的交点,
即g(x)-f(x)=0有两个相异的实根,
∴m的取值范围是:(-e^2+2e+1,+∞).
故g(x)的值域是[2e,+∞),
因而只需m≥2e,则g(x)=m就有实根.
故m的取值范围是{m|m≥2e}.
方法二:解方程由g(x)=m,得x^2-mx+e^2=0.
此方程有大于零的根,
故 m/2 >0
△=m^2-4e^2≥0 ,
等价于 m>0
m≥2e或m≤-2e ,
故m≥2e.
故m的取值范围是{m|m≥2e}.
(2)若g(x)-f(x)=0有两个相异的实根,
即g(x)=f(x)中,函数g(x)与f(x)的图象有两个不同的交点,
作出g(x)=x+e^2/x (x>0)的图象,
∵f(x)=-x^2+2ex+m-1
= --(x-e)^2+m-1+e^2,
其对称轴为x=e,开口向下,最大值为m-1+e^2,
故当m-1+e^2>2e,
即m>-e^2+2e+1时,
g(x)与f(x)的图象有两个不同的交点,
即g(x)-f(x)=0有两个相异的实根,
∴m的取值范围是:(-e^2+2e+1,+∞).
看了 已知函数f(x)=-x^2+...的网友还看了以下:
下列判断正确的是:A函数f(x)=x^2-2x/x-2是奇函数A函数f(x)=x^2-2x/x-2 2020-04-06 …
1.求f(x)=x²-2x-3在下列区间上的值域①R②[-3,0]③[2,3]④[0,3]2.已知 2020-05-02 …
判断下列函数的奇偶性:(1)f(x)=√(1-x²)/(|x+2|-2);(2).f(x)=x^( 2020-06-05 …
已知f(x+x/1)=x^2+(1/x^2)+3,求f(x)已知f(x/x+1)=x^2+1/x^ 2020-06-07 …
.已知f(x+1/x)=x^2+1/x^2,求f(x)的解析式.答案是这个f(x+1/x)=x²+ 2020-06-14 …
大家帮我看看这个函数的定义域是什么,f(x)=[(x^2)-1]/x-1 的定义域到底是以下哪一个 2020-06-27 …
分段函数求导?设f(x)={[(1+x)^(1/x0]-e,x不等于00,x=0求f(x)在x=0 2020-07-22 …
1.设f(x+1/x)=x2+1/x2,则f(x)=?2.下列函数中为奇函数的是A.{(ex方)- 2020-07-31 …
1,函数f(x)=ax^5+bx³+cx+1,若y(2)=2,则f(-2)=?;2.已知f(x)是偶 2020-12-08 …
急!高一“函数的概念”中的几道题目.1.已知函数f(x+1)=X^2-4x+1,求f(x)2.[变式 2020-12-08 …