早教吧作业答案频道 -->数学-->
设函数f(x)=x2+2ax-a-1,x∈[0,2],a为常数.(1)求f(x)的最小值g(a)的解析式;(2)在(1)中,是否存在最小的整数m,使得g(a)-m≤0对于任意a∈R均成立,若存在,求出m的值;若不
题目详情
设函数f(x)=x2+2ax-a-1,x∈[0,2],a为常数.
(1)求f(x)的最小值g(a)的解析式;
(2)在(1)中,是否存在最小的整数m,使得g(a)-m≤0对于任意a∈R均成立,若存在,求出m的值;若不存在,请说明理由.
(1)求f(x)的最小值g(a)的解析式;
(2)在(1)中,是否存在最小的整数m,使得g(a)-m≤0对于任意a∈R均成立,若存在,求出m的值;若不存在,请说明理由.
▼优质解答
答案和解析
(1)对称轴x=-a
①当-a≤0⇒a≥0时,
f(x)在[0,2]上是增函数,x=0时有最小值f(0)=-a-1…(1分)
②当-a≥2⇒a≤-2时,
f(x)在[0,2]上是减函数,x=2时有最小值f(2)=3a+3…(1分)
③当0<-a<2⇒-2<a<0时,
f(x)在[0,2]上是不单调,x=-a时有最小值f(-a)=-a2-a-1…(2分)
∴,g(a)=
…(2分)
(2)存在,
由题知g(a)在(−∞,−
]是增函数,在[−
,+∞)是减函数
∴a=−
时,g(a)max=−
,…(2分)
g(a)-m≤0恒成立
⇒g(a)max≤m,
∴m≥−
…(2分),
∵m为整数,
∴m的最小值为0…(1分)
①当-a≤0⇒a≥0时,
f(x)在[0,2]上是增函数,x=0时有最小值f(0)=-a-1…(1分)
②当-a≥2⇒a≤-2时,
f(x)在[0,2]上是减函数,x=2时有最小值f(2)=3a+3…(1分)
③当0<-a<2⇒-2<a<0时,
f(x)在[0,2]上是不单调,x=-a时有最小值f(-a)=-a2-a-1…(2分)
∴,g(a)=
|
|
(2)存在,
由题知g(a)在(−∞,−
1 |
2 |
1 |
2 |
∴a=−
1 |
2 |
3 |
4 |
g(a)-m≤0恒成立
⇒g(a)max≤m,
∴m≥−
3 |
4 |
∵m为整数,
∴m的最小值为0…(1分)
看了 设函数f(x)=x2+2ax...的网友还看了以下:
1.a≠0,b≠0,则a/|a|+b/|b|的不同取值的个数为()A.3B.2C.1D.02.若|x 2020-03-31 …
基本不等式超费解130已知a>b>0,求a2+1/(a*b)+1/[a*(a-b)]的最小值.a2 2020-05-13 …
设集合A={1,a,b},B={a,a^2,ab}且A=B,求实数A,B的值因为集合需要满足互异性 2020-05-15 …
假设集合A满足以下条件:诺a∈A,a不等于1,则1-a分之1属于A若a属于A,则1-a分之一属于A 2020-07-03 …
这道选择题怎么做?若分式有意义,则a的取值范围是A.a=0B.a=1C.a≠﹣1D这道选择题怎么做 2020-08-02 …
在直二面角中,直线直线与斜交,则().A.a不和b垂直,但可能a∥bB.a可能和b垂直,也可能a∥ 2020-08-02 …
已知a、b、c满足a<b<c,ab+bc+ac=0,abc=1,则()A.|a+b|>|c|B.|a 2020-11-01 …
因式分解急!1.a(m+n)-b(m+n)⒉xy(a-b)+x(a-b)3.n(x+y)+x+y⒋a 2020-11-03 …
听力测试十(20分)I.听句子,选择正确的图画(5分)1.A.B.C.2.A.B.C.3.A.B.C 2020-12-09 …
递回关系式的运算公式(数列)以下是推导一个公式"a=a+r(1-p^n)/(1-p)"的过程a=p* 2021-01-13 …