早教吧作业答案频道 -->数学-->
如图,边长为n的正△DEF的三个顶点恰好在边长为m的正△ABC的各边上,则△AEF的内切圆半径为()A.36(m−n)B.34(m−n)C.33(m−n)D.32(m−n)
题目详情
如图,边长为n的正△DEF的三个顶点恰好在边长为m的正△ABC的各边上,则△AEF的内切圆半径为( )
A.
(m−n)
B.
(m−n)
C.
(m−n)
D.
(m−n)
A.
| ||
| 6 |
B.
| ||
| 4 |
C.
| ||
| 3 |
D.
| ||
| 2 |
▼优质解答
答案和解析
设△AEF的内切圆半径为r,
∵△ABC、△DEF都是等边三角形,且△DEF的三个顶点都在△ABC的边上,
∴△AEF≌△BDE≌△CFD,
∴AF=BE,AE+AF+EF=AE+BE+EF=m+n,
S△ABC=
m2,S△DEF=
n2,
∴S△AEF=
(S△ABC-S△DEF)=
(m2-n2),
则r=
=
(m-n).
故选A.
∵△ABC、△DEF都是等边三角形,且△DEF的三个顶点都在△ABC的边上,
∴△AEF≌△BDE≌△CFD,
∴AF=BE,AE+AF+EF=AE+BE+EF=m+n,
S△ABC=
| ||
| 4 |
| ||
| 4 |
∴S△AEF=
| 1 |
| 3 |
| ||
| 12 |
则r=
| 2 S△AEF |
| AE+AF+EF |
| ||
| 6 |
故选A.
看了 如图,边长为n的正△DEF的...的网友还看了以下:
周长相等的n边形,正n边形面积最大证明周长相等正N边形比任意N边形面积大. 2020-03-31 …
周长相等的n边形,正n边形面积最大 2020-05-20 …
正n边形的边数=------÷-------正n边形每个外角的度数=---------÷----- 2020-06-16 …
如图,1,2,3,4,分别是圆o的内接正三角形,正方形,正五边形,.正n边形,点m,n分别从点bc 2020-07-21 …
N边形正N边形用英语怎么说 2020-07-21 …
已知一个圆的半径为R,求这个圆的内接正n边形的周长和面积.1·已知一个圆的半径为R.(1)求这个圆 2020-07-26 …
N边形套圆一个正N边形,在里面套一个最大的圆,再在这个圆里面再套一个最大的正N边形.问:外面大正N 2020-07-26 …
边长a(下标)n=2Rsin180°/n,a是什么?n是不是边数?正n边形的半径和边心距把正n边形 2020-07-26 …
正n边形的半径和边心距把正n边形分成个全等的直角三角形,每个直角三角形的斜边都是正n边形的,一条直 2020-07-26 …
已知圆的半径为R,求它的内接正三角形、正六边形、正五边形正n边形的边长an,边心距rn及面积Sn 2020-07-26 …