早教吧作业答案频道 -->数学-->
操作:如图①,点O为线段MN的中点,直线PQ与MN相交于点O,请利用图①画出一对以点O为对称中心的全等三角形.根据上述操作得到的经验完成下列探究活动:探究一:如图②,在四边形ABCD中
题目详情

▼优质解答
答案和解析
(1)如图
(2)结论:AB=AF+CF.
证明:分别延长AE、DF交于点M.
∵E为BC的中点,
∴BE=CE,
∵AB∥CD,
∴∠BAE=∠M,
在△ABE与△MCE中,
∵
,
∴△ABE≌△MCE(AAS),
∴AB=MC,
又∵∠BAE=∠EAF,
∴∠M=∠EAF,
∴MF=AF,
又∵MC=MF+CF,
∴AB=AF+CF;
(3)分别延长DE、CF交于点G.
∵AB∥CF,
∴∠B=∠C,∠BAE=∠G,
∴△ABE∽△GCE,
∴
=
,
又∵
=
,
∴
=
,
∵AB=5,
∴GC=10,
∵FC=1,
∴GF=9,
∵AB∥CF,
∴∠BAE=∠G,
又∵∠BAE=∠EDF,
∴∠G=∠EDF,
∴GF=DF,
∴DF=9.
∠BAE=∠M ∠BAE=∠M ∠BAE=∠M∠AEB=∠MEC ∠AEB=∠MEC ∠AEB=∠MECBE=CE BE=CE BE=CE ,
∴△ABE≌△MCE(AAS),
∴AB=MC,
又∵∠BAE=∠EAF,
∴∠M=∠EAF,
∴MF=AF,
又∵MC=MF+CF,
∴AB=AF+CF;
(3)分别延长DE、CF交于点G.
∵AB∥CF,
∴∠B=∠C,∠BAE=∠G,
∴△ABE∽△GCE,
∴
=
,
又∵
=
,
∴
=
,
∵AB=5,
∴GC=10,
∵FC=1,
∴GF=9,
∵AB∥CF,
∴∠BAE=∠G,
又∵∠BAE=∠EDF,
∴∠G=∠EDF,
∴GF=DF,
∴DF=9.
AB AB ABGC GC GC=
BE BE BEEC EC EC,
又∵
=
,
∴
=
,
∵AB=5,
∴GC=10,
∵FC=1,
∴GF=9,
∵AB∥CF,
∴∠BAE=∠G,
又∵∠BAE=∠EDF,
∴∠G=∠EDF,
∴GF=DF,
∴DF=9.
BE BE BEEC EC EC=
1 1 12 2 2,
∴
=
,
∵AB=5,
∴GC=10,
∵FC=1,
∴GF=9,
∵AB∥CF,
∴∠BAE=∠G,
又∵∠BAE=∠EDF,
∴∠G=∠EDF,
∴GF=DF,
∴DF=9.
AB AB ABGC GC GC=
1 1 12 2 2,
∵AB=5,
∴GC=10,
∵FC=1,
∴GF=9,
∵AB∥CF,
∴∠BAE=∠G,
又∵∠BAE=∠EDF,
∴∠G=∠EDF,
∴GF=DF,
∴DF=9.

(2)结论:AB=AF+CF.
证明:分别延长AE、DF交于点M.
∵E为BC的中点,
∴BE=CE,
∵AB∥CD,
∴∠BAE=∠M,
在△ABE与△MCE中,
∵
|
∴△ABE≌△MCE(AAS),
∴AB=MC,
又∵∠BAE=∠EAF,
∴∠M=∠EAF,
∴MF=AF,
又∵MC=MF+CF,
∴AB=AF+CF;
(3)分别延长DE、CF交于点G.
∵AB∥CF,
∴∠B=∠C,∠BAE=∠G,
∴△ABE∽△GCE,
∴
AB |
GC |
BE |
EC |
又∵
BE |
EC |
1 |
2 |
∴
AB |
GC |
1 |
2 |
∵AB=5,
∴GC=10,
∵FC=1,
∴GF=9,
∵AB∥CF,
∴∠BAE=∠G,
又∵∠BAE=∠EDF,
∴∠G=∠EDF,
∴GF=DF,
∴DF=9.
|
∠BAE=∠M |
∠AEB=∠MEC |
BE=CE |
∠BAE=∠M |
∠AEB=∠MEC |
BE=CE |
∠BAE=∠M |
∠AEB=∠MEC |
BE=CE |
∴△ABE≌△MCE(AAS),
∴AB=MC,
又∵∠BAE=∠EAF,
∴∠M=∠EAF,
∴MF=AF,
又∵MC=MF+CF,
∴AB=AF+CF;
(3)分别延长DE、CF交于点G.
∵AB∥CF,
∴∠B=∠C,∠BAE=∠G,
∴△ABE∽△GCE,
∴
AB |
GC |
BE |
EC |
又∵
BE |
EC |
1 |
2 |
∴
AB |
GC |
1 |
2 |
∵AB=5,
∴GC=10,
∵FC=1,
∴GF=9,
∵AB∥CF,
∴∠BAE=∠G,
又∵∠BAE=∠EDF,
∴∠G=∠EDF,
∴GF=DF,
∴DF=9.
AB |
GC |
BE |
EC |
又∵
BE |
EC |
1 |
2 |
∴
AB |
GC |
1 |
2 |
∵AB=5,
∴GC=10,
∵FC=1,
∴GF=9,
∵AB∥CF,
∴∠BAE=∠G,
又∵∠BAE=∠EDF,
∴∠G=∠EDF,
∴GF=DF,
∴DF=9.
BE |
EC |
1 |
2 |
∴
AB |
GC |
1 |
2 |
∵AB=5,
∴GC=10,
∵FC=1,
∴GF=9,
∵AB∥CF,
∴∠BAE=∠G,
又∵∠BAE=∠EDF,
∴∠G=∠EDF,
∴GF=DF,
∴DF=9.
AB |
GC |
1 |
2 |
∵AB=5,
∴GC=10,
∵FC=1,
∴GF=9,
∵AB∥CF,
∴∠BAE=∠G,
又∵∠BAE=∠EDF,
∴∠G=∠EDF,
∴GF=DF,
∴DF=9.
看了 操作:如图①,点O为线段MN...的网友还看了以下:
两根电线第二根长度是第一根3.5倍如把第二根剪15米那两根电线长度就一样了,第二根电线原来长度是多 2020-05-13 …
三道应用题,急,后天就要交,1两根电线,一根长21米,另一根长18米,把这两根电线都剪下同样长的一 2020-05-20 …
数学题架电线从变电所到开发区架设线路,要求从变电所到开发区大门口,两端都架设电线杆,现有两种方案: 2020-05-21 …
早晨十字星的意思是什么?由3根K线组成,第一根是阴线,第二根是十字线,第三根是阳线.第三根K线实体 2020-06-12 …
从第一根电线杆到第二十根电线杆的距离是九百五十米从第一根电线杆到第六根进 2020-07-09 …
两根电线合在一起当一根用是否能当它一根的两倍负荷.我想每层楼的各自的电线分层后都用十平方的电线,而 2020-07-10 …
今天干活,看到电机外,上接的电缆线换上一根电缆线,里面有4根线,一根不用,分别接好三根在电缆另一头是 2020-11-16 …
3根火线,一根零线6平方,要用到220V,需要10平方,分成3个220V,零线可以并到一起吗?零线有 2020-11-21 …
公路两旁每隔120米竖着一根电线杆,骑自行车从第一根电线杆到第六根电线杆处,小王要1分钟,小李要点5 2020-11-24 …
在路旁某处有电线杆15根,某人沿路的一方每次运一根放到路边,然后沿原路返回原地,再运第二根,第三根. 2020-12-27 …