早教吧作业答案频道 -->数学-->
操作:如图①,点O为线段MN的中点,直线PQ与MN相交于点O,请利用图①画出一对以点O为对称中心的全等三角形.根据上述操作得到的经验完成下列探究活动:探究一:如图②,在四边形ABCD中
题目详情

▼优质解答
答案和解析
(1)如图
(2)结论:AB=AF+CF.
证明:分别延长AE、DF交于点M.
∵E为BC的中点,
∴BE=CE,
∵AB∥CD,
∴∠BAE=∠M,
在△ABE与△MCE中,
∵
,
∴△ABE≌△MCE(AAS),
∴AB=MC,
又∵∠BAE=∠EAF,
∴∠M=∠EAF,
∴MF=AF,
又∵MC=MF+CF,
∴AB=AF+CF;
(3)分别延长DE、CF交于点G.
∵AB∥CF,
∴∠B=∠C,∠BAE=∠G,
∴△ABE∽△GCE,
∴
=
,
又∵
=
,
∴
=
,
∵AB=5,
∴GC=10,
∵FC=1,
∴GF=9,
∵AB∥CF,
∴∠BAE=∠G,
又∵∠BAE=∠EDF,
∴∠G=∠EDF,
∴GF=DF,
∴DF=9.
∠BAE=∠M ∠BAE=∠M ∠BAE=∠M∠AEB=∠MEC ∠AEB=∠MEC ∠AEB=∠MECBE=CE BE=CE BE=CE ,
∴△ABE≌△MCE(AAS),
∴AB=MC,
又∵∠BAE=∠EAF,
∴∠M=∠EAF,
∴MF=AF,
又∵MC=MF+CF,
∴AB=AF+CF;
(3)分别延长DE、CF交于点G.
∵AB∥CF,
∴∠B=∠C,∠BAE=∠G,
∴△ABE∽△GCE,
∴
=
,
又∵
=
,
∴
=
,
∵AB=5,
∴GC=10,
∵FC=1,
∴GF=9,
∵AB∥CF,
∴∠BAE=∠G,
又∵∠BAE=∠EDF,
∴∠G=∠EDF,
∴GF=DF,
∴DF=9.
AB AB ABGC GC GC=
BE BE BEEC EC EC,
又∵
=
,
∴
=
,
∵AB=5,
∴GC=10,
∵FC=1,
∴GF=9,
∵AB∥CF,
∴∠BAE=∠G,
又∵∠BAE=∠EDF,
∴∠G=∠EDF,
∴GF=DF,
∴DF=9.
BE BE BEEC EC EC=
1 1 12 2 2,
∴
=
,
∵AB=5,
∴GC=10,
∵FC=1,
∴GF=9,
∵AB∥CF,
∴∠BAE=∠G,
又∵∠BAE=∠EDF,
∴∠G=∠EDF,
∴GF=DF,
∴DF=9.
AB AB ABGC GC GC=
1 1 12 2 2,
∵AB=5,
∴GC=10,
∵FC=1,
∴GF=9,
∵AB∥CF,
∴∠BAE=∠G,
又∵∠BAE=∠EDF,
∴∠G=∠EDF,
∴GF=DF,
∴DF=9.

(2)结论:AB=AF+CF.
证明:分别延长AE、DF交于点M.
∵E为BC的中点,
∴BE=CE,
∵AB∥CD,
∴∠BAE=∠M,
在△ABE与△MCE中,
∵
|
∴△ABE≌△MCE(AAS),
∴AB=MC,
又∵∠BAE=∠EAF,
∴∠M=∠EAF,
∴MF=AF,
又∵MC=MF+CF,
∴AB=AF+CF;
(3)分别延长DE、CF交于点G.
∵AB∥CF,
∴∠B=∠C,∠BAE=∠G,
∴△ABE∽△GCE,
∴
AB |
GC |
BE |
EC |
又∵
BE |
EC |
1 |
2 |
∴
AB |
GC |
1 |
2 |
∵AB=5,
∴GC=10,
∵FC=1,
∴GF=9,
∵AB∥CF,
∴∠BAE=∠G,
又∵∠BAE=∠EDF,
∴∠G=∠EDF,
∴GF=DF,
∴DF=9.
|
∠BAE=∠M |
∠AEB=∠MEC |
BE=CE |
∠BAE=∠M |
∠AEB=∠MEC |
BE=CE |
∠BAE=∠M |
∠AEB=∠MEC |
BE=CE |
∴△ABE≌△MCE(AAS),
∴AB=MC,
又∵∠BAE=∠EAF,
∴∠M=∠EAF,
∴MF=AF,
又∵MC=MF+CF,
∴AB=AF+CF;
(3)分别延长DE、CF交于点G.
∵AB∥CF,
∴∠B=∠C,∠BAE=∠G,
∴△ABE∽△GCE,
∴
AB |
GC |
BE |
EC |
又∵
BE |
EC |
1 |
2 |
∴
AB |
GC |
1 |
2 |
∵AB=5,
∴GC=10,
∵FC=1,
∴GF=9,
∵AB∥CF,
∴∠BAE=∠G,
又∵∠BAE=∠EDF,
∴∠G=∠EDF,
∴GF=DF,
∴DF=9.
AB |
GC |
BE |
EC |
又∵
BE |
EC |
1 |
2 |
∴
AB |
GC |
1 |
2 |
∵AB=5,
∴GC=10,
∵FC=1,
∴GF=9,
∵AB∥CF,
∴∠BAE=∠G,
又∵∠BAE=∠EDF,
∴∠G=∠EDF,
∴GF=DF,
∴DF=9.
BE |
EC |
1 |
2 |
∴
AB |
GC |
1 |
2 |
∵AB=5,
∴GC=10,
∵FC=1,
∴GF=9,
∵AB∥CF,
∴∠BAE=∠G,
又∵∠BAE=∠EDF,
∴∠G=∠EDF,
∴GF=DF,
∴DF=9.
AB |
GC |
1 |
2 |
∵AB=5,
∴GC=10,
∵FC=1,
∴GF=9,
∵AB∥CF,
∴∠BAE=∠G,
又∵∠BAE=∠EDF,
∴∠G=∠EDF,
∴GF=DF,
∴DF=9.
看了 操作:如图①,点O为线段MN...的网友还看了以下:
如图,四边形ABCD中,∠ABD=∠BCD=90°,AB=AC,AE⊥BC于点F,交BD于点E,且 2020-04-25 …
如图①,四边形ABCD是平行四边形,对角线AC,BD相交于点O,过点O做直线EF分别交AD,BC于 2020-05-15 …
如图,四边形ABCD是正方形,点G是BC上任意一点,DE垂直AB于点E,BF垂直AG于点F,当点G 2020-05-17 …
①如果四边形ABCD的四个内角度数之比为2:3:3:4,则四边形ABCD为梯形②如果一个等腰梯形的 2020-06-03 …
如图,点A(m,m+1),B(m+3,m-1)都在反比例函数y=kx的图象上.(1)求m,k的值; 2020-06-11 …
如图,点P是平行四边形ABCD对角线BD上的动点,点M为AD的中点,已知AD=8,AB=10,∠A 2020-07-01 …
如图是一个棱长为1的无盖正方体盒子的平面展开图,A,B,C,D为其上四个点,(1)请画出无盖正方体 2020-07-22 …
座地钟报时延迟了半钟头,如何调整?座地钟指针可以逆时针旋转吗?1)报时不准确:比如说四点整,分针指1 2020-10-30 …
平面上有四个点,过其中任意两点作直线.1如果四点在同一平面上,那么可以作()条不同的直线;2如果四点 2020-11-03 …
(2005•宿迁)如图,小刚对子弹击穿木板靶心前后,子弹能量变化的问题进行思考.有如下四点看法:(1 2020-11-12 …