如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若AEAB=23
如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:
①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若
=AE AB
,则3S△EDH=13S△DHC,其中结论正确的有( )2 3
A. 1个
B. 2个
C. 3个
D. 4个
∴EF=AD=CD,∠ACD=45°,∠GFC=90°,
∴△CFG为等腰直角三角形,
∴GF=FC,
∵EG=EF-GF,DF=CD-FC,
∴EG=DF,故①正确;
②∵△CFG为等腰直角三角形,H为CG的中点,
∴FH=CH,∠GFH=
1 |
2 |
在△EHF和△DHC中,
|
∴△EHF≌△DHC(SAS),
∴∠HEF=∠HDC,
∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF-∠HDC=∠AEF+∠ADF=180°,故②正确;
③∵△CFG为等腰直角三角形,H为CG的中点,
∴FH=CH,∠GFH=
1 |
2 |
在△EHF和△DHC中,
|
∴△EHF≌△DHC(SAS),故③正确;
④∵
AE |
AB |
2 |
3 |

∴AE=2BE,
∵△CFG为等腰直角三角形,H为CG的中点,
∴FH=GH,∠FHG=90°,
∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,
在△EGH和△DFH中,
|
∴△EGH≌△DFH(SAS),
∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,
∴△EHD为等腰直角三角形,
过H点作HM垂直于CD于M点,如图所示:
设HM=x,则DM=5x,DH=
26 |
则S△DHC=
1 |
2 |
1 |
2 |
∴3S△EDH=13S△DHC,故④正确;
故选:D.
已知f(x)=ax2+bx+c(a≠0),g(x)=f[f(x)]①若f(x)无零点,则g(x)> 2020-05-23 …
设a是f(z)的孤立奇点,证明;若f(z)为奇函数,则Res[f(z),a]=Res[f(z),- 2020-06-26 …
设a∈R,函数f(x)=㏑x-ax一二问可不答重点第3问一定要写(3)若f(x)有两个相异零点x1 2020-07-14 …
对于函数f(x),若f(x)=x,则称x为f(x)的“不动点”,若f(f(x))=x,则称x为f( 2020-07-30 …
设f(x)存在二阶导数,下列结论正确的是A若f(x)只有两个零点,则f'(x)必定只有一个零点B若 2020-07-30 …
a.若Xo为f(x)的极点,则必有f'(Xo)=0b.若f'(Xo)=0,则Xo必为f(x)的极值 2020-07-31 …
对于函数y=f(x)若f(x)=x,则称x为函数y=f(x)的不动点,对于函数y=f(x),若f[f 2020-12-08 …
对于函数f(x),若x,则称x为f(x)的不动点,若f(f(x))=x,则称x为f(x)的稳定点,函 2020-12-08 …
高一集合对于函数F(X)=X,则称为X为F(X)的不动点,若F(F(X))=X,则称X为F(X)的稳 2020-12-08 …
对于函数f(x),若f(x)=x,则称x为f(x)的“不动点”.若f(f(x))=x,则称x为f(x 2020-12-20 …