早教吧作业答案频道 -->其他-->
已知:在△ABC中,∠ABC=90°,点E在直线AB上,ED与直线AC垂直,垂足为D,且点M为EC中点,连接BM,DM.(1)如图1,若点E在线段AB上,探究线段BM与DM及∠BMD与∠BCD所满足的数量关系,并直接写
题目详情
已知:在△ABC中,∠ABC=90°,点E在直线AB上,ED与直线AC垂直,垂足为D,且点M为EC中点,连接BM,DM.

(1)如图1,若点E在线段AB上,探究线段BM与DM及∠BMD与∠BCD所满足的数量关系,并直接写出你得到的结论;
(2)如图2,若点E在BA延长线上,你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明;
(3)若点E在AB延长线上,请你根据条件画出相应的图形,并直接写出线段BM与DM及∠BMD与∠BCD所满足的数量关系.

(1)如图1,若点E在线段AB上,探究线段BM与DM及∠BMD与∠BCD所满足的数量关系,并直接写出你得到的结论;
(2)如图2,若点E在BA延长线上,你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明;
(3)若点E在AB延长线上,请你根据条件画出相应的图形,并直接写出线段BM与DM及∠BMD与∠BCD所满足的数量关系.
▼优质解答
答案和解析
(1)结论:BM=DM,∠BMD=2∠BCD.
理由:∵BM、DM分别是Rt△DEC、Rt△EBC的斜边上的中线,
∴BM=DM=
CE;
又∵BM=MC,∴∠MCB=∠MBC,即∠BME=2∠BCM;
同理可得∠DME=2∠DCM;
∴∠BME+∠DME=2(∠BCM+∠DCM),即∠BMD=2∠BCD.

(2)在(1)中得到的结论仍然成立.即BM=DM,∠BMD=2∠BCD
证法一:∵点M是Rt△BEC的斜边EC的中点,
∴BM=
EC=MC,
又点M是Rt△BEC的斜边EC的中点,
∴DM=
EC=MC,
∴BM=DM;
∵BM=MC,DM=MC,
∴∠CBM=∠BCM,∠DCM=∠CDM,
∴∠BMD=∠EMB-∠EMD=2∠BCM-2∠DCM
=2(∠BCM-∠DCM)=2∠BCD,
即∠BMD=2∠BCD.
证法二:∵点M是Rt△BEC的斜边EC的中点,
∴BM=
EC=ME;
又点M是Rt△DEC的斜边EC的中点,
∴DM=
EC=MC,
∴BM=DM;
∵BM=ME,DM=MC,
∴∠BEC=∠EBM,∠MCD=∠MDC,
∴∠BEM+∠MCD=∠BAC=90°-∠BCD,
∴∠BMD=180°-(∠BMC+∠DME),
=180°-2(∠BEM+∠MCD)=180°-2(90°-∠BCD)=2∠BCD,
即∠BMD=2∠BCD.
(3)所画图形如图所示:

图1中有BM=DM,∠BMD=2∠BCD;
图2中∠BCD不存在,有BM=DM;
图3中有BM=DM,∠BMD=360°-2∠BCD.
解法同(2).
理由:∵BM、DM分别是Rt△DEC、Rt△EBC的斜边上的中线,
∴BM=DM=
1 |
2 |
又∵BM=MC,∴∠MCB=∠MBC,即∠BME=2∠BCM;
同理可得∠DME=2∠DCM;
∴∠BME+∠DME=2(∠BCM+∠DCM),即∠BMD=2∠BCD.

(2)在(1)中得到的结论仍然成立.即BM=DM,∠BMD=2∠BCD
证法一:∵点M是Rt△BEC的斜边EC的中点,
∴BM=
1 |
2 |
又点M是Rt△BEC的斜边EC的中点,
∴DM=
1 |
2 |
∴BM=DM;
∵BM=MC,DM=MC,
∴∠CBM=∠BCM,∠DCM=∠CDM,
∴∠BMD=∠EMB-∠EMD=2∠BCM-2∠DCM
=2(∠BCM-∠DCM)=2∠BCD,
即∠BMD=2∠BCD.
证法二:∵点M是Rt△BEC的斜边EC的中点,
∴BM=
1 |
2 |
又点M是Rt△DEC的斜边EC的中点,
∴DM=
1 |
2 |
∴BM=DM;
∵BM=ME,DM=MC,
∴∠BEC=∠EBM,∠MCD=∠MDC,
∴∠BEM+∠MCD=∠BAC=90°-∠BCD,
∴∠BMD=180°-(∠BMC+∠DME),
=180°-2(∠BEM+∠MCD)=180°-2(90°-∠BCD)=2∠BCD,
即∠BMD=2∠BCD.
(3)所画图形如图所示:

图1中有BM=DM,∠BMD=2∠BCD;
图2中∠BCD不存在,有BM=DM;
图3中有BM=DM,∠BMD=360°-2∠BCD.
解法同(2).
看了 已知:在△ABC中,∠ABC...的网友还看了以下:
参数估计就是用样本统计量去估计总体的参数。总体参数是一个( )。A.统计量B.随机变量C.未知的量D 2020-05-30 …
已知空间任意两个向量a向量,b向量,则这两个向量一定是A,共线向量B共面向量C.不共线向量已知空间 2020-06-03 …
已知三边作三角形,用到的基本作图A作一个角等于已知角B作已知角的平分线C作一条线段等于已知线段D作 2020-07-29 …
已知C、D、E线段AB的四等分点,O为直线AB外的任意一点若向量OC+向量OD+向量0E=m(向量 2020-08-01 …
求斜率与倾斜角1.已知l与d向量平行求直线l的斜率与倾斜角(1)d向量=(2,-根号3)(2)d向 2020-08-01 …
已知三边求作三角形,用到的基本作图是()。A.作角等于已知角B.作已知直线的垂线C.作线段等于已知 2020-08-02 …
用尺规作图,已知三边作三角形,用到的基本作图是()A.作一个角等于已知角B.作已知直线的垂线C.作 2020-08-02 …
已知线段d是线段a、b、c的第四比例项,其中a=3cm,b=4cm,c=5cm,则d的值为()A. 2020-08-02 …
已知向量e1,e2是平面内不共线的两个向量.已知向量e1,e2是平面内不共线的两个向量,向量AB=e 2020-10-31 …
设e1、e2为基底向量,已知向量AB=e1-ke2,向量CB=3e1-e2,若A、B、D三点共线,则 2020-10-31 …