早教吧 育儿知识 作业答案 考试题库 百科 知识分享

几何相邻和逻辑相邻,他们哪个范围大?还是它们是等价的?

题目详情
几何相邻和逻辑相邻,他们哪个范围大?还是它们是等价的?
▼优质解答
答案和解析
卡诺图是由美国工程师卡诺(Kamaugh)提出的一种描述逻辑函数的特殊方法。这种方法是将n个变量的逻辑函数填入一个矩形或正方形的二维空间即一个平面中,把矩形或正方形划分成2n个小别代表方格,这些小方格分n个变量逻辑函数的2n个最小项,每个最小项占一格,几何相邻或处在对称位置上的小方格所表示的最小项是逻辑相邻项。
卡诺图把最小项按照一定规则排列而构成的方框图。构成卡诺图的原则是:
① N变量的卡诺图有2N个小方块(最小项); ② 最小项排列规则:几何相邻的必须逻辑相邻。
逻辑相邻:两个最小项,只有一个变量的形式不同,其余的都相同。逻辑相邻的最小项可以合并。几何相邻的含义:
一是相邻——紧挨的;二是相对——任一行或一列的两头;三是相重——对折起来后位置相重。
卡诺图的画法:
在画卡诺图时,标注变量区域划分的方法是分别以各变量将矩形或正方形的有限平面一分为二,其中一半定为原变量区,在端线外标明原变量符号并写出1,另一半为反变量区(可不标符号)并写出0,即一个变量的原变量和反变量各有独立的区域,不能重复,这样综合起来就是一个含有2n个小方格的卡诺图。各小方格端线外标注的文字和数字符号也就分别代表了相应的最小项。因此对于每个最小项来说,端线外面的数字符号就像是其二维空间内的坐标一样,一一对应,说得确切一点,应该是广义的二维坐标。如果用这种观点去描述一个逻辑函数或快速准确地写出一个用卡诺图法化简后的逻辑函数就十分轻松了。