早教吧作业答案频道 -->数学-->
已知数列{an}中,a1=1,且满足递推关系an+1=2a2n+3an+man+1(m∈N*)(1)当m=1时,求数列{an}的通项an;(2)当m∈N*时,数列{an}满足不等式an+1≥an恒成立,求m的取值范围.
题目详情
已知数列{an}中,a1=1,且满足递推关系an+1=
(m∈N*)
(1)当m=1时,求数列{an}的通项an;
(2)当m∈N*时,数列{an}满足不等式an+1≥an恒成立,求m的取值范围.
2
| ||
an+1 |
(1)当m=1时,求数列{an}的通项an;
(2)当m∈N*时,数列{an}满足不等式an+1≥an恒成立,求m的取值范围.
▼优质解答
答案和解析
(1)m=1,由an+1=
,n∈N*,
得:an+1=
=2an+1,
an+1+1=2(an+1),
∴{an+1}是以2为首项,公比也是2的等比例数列.
于是an+1=2•2n-1,
∴an=2n-1.
(2)由an+1≥an,a1=1,知an>0,
∴
≥an,
即m≥-an2-2an,
依题意,有m≥-(an+1)2+1恒成立.
∵an≥1,
∴m≥-22+1=-3,
∵m∈m∈N*,
即满足题意的m的取值范围是[1,+∞).
2an2+3an+1 |
an+1 |
得:an+1=
(2an+1)( an+1) |
an+1 |
an+1+1=2(an+1),
∴{an+1}是以2为首项,公比也是2的等比例数列.
于是an+1=2•2n-1,
∴an=2n-1.
(2)由an+1≥an,a1=1,知an>0,
∴
2an2+3an+m |
an+1 |
即m≥-an2-2an,
依题意,有m≥-(an+1)2+1恒成立.
∵an≥1,
∴m≥-22+1=-3,
∵m∈m∈N*,
即满足题意的m的取值范围是[1,+∞).
看了 已知数列{an}中,a1=1...的网友还看了以下:
先能明白(1)小题的解答过程,再解答第(2)小题,(1)已知a²-3a+1=0,求a²+1/a²的值 2020-03-31 …
设a=(√5-1)/2,求(a^5+a^4-2a^3-a^2-a+2)/a^3-a∵2a=√5-1 2020-04-05 …
数集A满足条件:若a∈A则(1+a)/(1—a)∈A(a≠1).若1/3∈A,求集合中的其他元素. 2020-04-06 …
解分式方程1.方程1/x-1=a/x+1(a不等于1)的解不大于0,则a的取植范围是()A.a大于 2020-05-01 …
已知a大于0,b大于0,a+b=1,求证(a+1/a)(b+1/b)大于或等于25/4.解法里面有 2020-05-15 …
已知f(X)=Lg1-X/1+X,a,b属于(-1,1)求证:f(a)+f(B)=F(A+B)/1 2020-05-22 …
1.已知x^2-4x+1=0,则x^4+1/x^4=2.如果方程a/(x-2)+3=(1-x)/( 2020-06-25 …
若关于x的方程x+2/x=c+2/c的解是x1=c,x2=2/c,则关于x的方程x+2/(x-1) 2020-06-27 …
(a-1)(a+1)=?(a-1)(a^2+a+1)=?(a-1)(a^3+a^2+a+1)=?由 2020-07-21 …
x*x*x*x+2x*x*x+3x*x-2x+1因式分解x*x*x*x+2x*x*x+3x*x+2x 2020-12-28 …