早教吧作业答案频道 -->其他-->
问题探究:如图1,Rt△ABC中,∠C=90°,∠ABC=30°,为探究Rt△ABC中30°角所对的直角边AC与斜边AB的数量关系,学习小组成员已经添加了辅助线.(1)请叙述辅助线的添法,并完成探究过程;探
题目详情
问题探究:如图1,Rt△ABC中,∠C=90°,∠ABC=30°,为探究Rt△ABC中30°角所对的直角边AC与斜边AB的数量关系,学习小组成员已经添加了辅助线.
(1)请叙述辅助线的添法,并完成探究过程;
探究应用1:如图2,Rt△ABC中,∠C=90°,∠ABC=30°,点D在线段CB上,以AD为边作等边△ADE,连接BE,为探究线段BE与DE之间的数量关系,组长已经添加了辅助线:取AB的中点F,连接EF.
(2)线段BE与DE之间的数量关系是______;并说明理由;
探究应用2:如图3,Rt△ABC中,∠C=90°,∠ABC=30°,点D在线段CB的延长线上,以AD为边作等边△ADE,连接BE.
(3)线段BE与DE之间的数量关系是______,并说明理由.

(1)请叙述辅助线的添法,并完成探究过程;
探究应用1:如图2,Rt△ABC中,∠C=90°,∠ABC=30°,点D在线段CB上,以AD为边作等边△ADE,连接BE,为探究线段BE与DE之间的数量关系,组长已经添加了辅助线:取AB的中点F,连接EF.
(2)线段BE与DE之间的数量关系是______;并说明理由;
探究应用2:如图3,Rt△ABC中,∠C=90°,∠ABC=30°,点D在线段CB的延长线上,以AD为边作等边△ADE,连接BE.
(3)线段BE与DE之间的数量关系是______,并说明理由.

▼优质解答
答案和解析
(1)如图1,作CB的垂直平分线分别交AB、BC于P、D,
∴PC=PB,
∴∠PCB=∠B=30°.
∵∠ACB=90°,
∴∠A=60°,∠ACP=60°,
∴∠APC=∠A=∠ACP=60°,
∴△ACP是等边三角形,
∴AC=AP=PC.
∴AC=AP=PB=
AB,
即AC=
AB;.
(2)BE=DE.
理由:如图2,∵F是AB的中点,
∴AF=
AB.
∵∠C=90°,∠ABC=30°,
∴AC=
AB,∠CAB=60°.
∴AC=AF.
∵△ADE是等边三角形,
∴AD=AE=DE,∠EAD=60°,
∴∠CAB=∠DAE,
∴∠CAB-∠3=∠DAE-∠3,
∴∠1=∠2.
在△ACD和△AFE中,
,
∴△ACD≌△AFE(SAS),
∴∠C=∠AFE=90°,
∴EF⊥AB.
∵F是AB的中点,
∴EF是AB的垂直平分线,
∴AE=BE,
∴BE=DE.
故答案为:BE=DE;
(3)BE=DE.
理由:如图3,取AB的中点F,连接EF,
∴AF=
AB.
∵∠C=90°,∠ABC=30°,
∴AC=
AB,∠CAB=60°.
∴AC=AF.
∵△ADE是等边三角形,
∴AD=AE=DE,∠EAD=60°,
∴∠CAB=∠DAE,
∴∠CAB-∠2=∠DAE-∠2,
∴∠1=∠3.
在△ACD和△AFE中,
,
∴△ACD≌△AFE(SAS),
∴∠C=∠AFE=90°,
∴EF⊥AB.
∵F是AB的中点,
∴EF是AB的垂直平分线,
∴AE=BE,
∴BE=DE.
故答案为:BE=DE.
∴PC=PB,

∴∠PCB=∠B=30°.
∵∠ACB=90°,
∴∠A=60°,∠ACP=60°,
∴∠APC=∠A=∠ACP=60°,
∴△ACP是等边三角形,
∴AC=AP=PC.
∴AC=AP=PB=
1 |
2 |
即AC=
1 |
2 |
(2)BE=DE.
理由:如图2,∵F是AB的中点,

∴AF=
1 |
2 |
∵∠C=90°,∠ABC=30°,
∴AC=
1 |
2 |
∴AC=AF.
∵△ADE是等边三角形,
∴AD=AE=DE,∠EAD=60°,
∴∠CAB=∠DAE,
∴∠CAB-∠3=∠DAE-∠3,
∴∠1=∠2.
在△ACD和△AFE中,
|
∴△ACD≌△AFE(SAS),
∴∠C=∠AFE=90°,
∴EF⊥AB.
∵F是AB的中点,
∴EF是AB的垂直平分线,
∴AE=BE,
∴BE=DE.
故答案为:BE=DE;
(3)BE=DE.
理由:如图3,取AB的中点F,连接EF,

∴AF=
1 |
2 |
∵∠C=90°,∠ABC=30°,
∴AC=
1 |
2 |
∴AC=AF.
∵△ADE是等边三角形,
∴AD=AE=DE,∠EAD=60°,
∴∠CAB=∠DAE,
∴∠CAB-∠2=∠DAE-∠2,
∴∠1=∠3.
在△ACD和△AFE中,
|
∴△ACD≌△AFE(SAS),
∴∠C=∠AFE=90°,
∴EF⊥AB.
∵F是AB的中点,
∴EF是AB的垂直平分线,
∴AE=BE,
∴BE=DE.
故答案为:BE=DE.
看了 问题探究:如图1,Rt△AB...的网友还看了以下:
在△ABC中已知角A,B,C所对边是a,b,c,边c=2/7,且A的正弦+B的正弦=3的根×A的正弦 2020-03-30 …
按要求回答下列问题(1)石墨晶体中C-C键的键角为.其中平均每个六边形所含的C原子数为个.(2)金 2020-04-09 …
按要求问答下列问题(1)石墨晶体中C-C键的键角为.其中平均每个六边形所含的C原子数为个.(2)金 2020-04-09 …
1.试说明;如果三角形的两边和其中一边上的中线与另一个三角形的两边和其中一边上的中线对应成比例,那 2020-05-13 …
几ˋˊ何数学题自己先把图画出来吧图:一个由点A.B.C组成的等边三角形中,点D是边AB的中点,点E 2020-05-13 …
经济数学应用题1、已知某产品的边际成本为C'(X)=3+1/3X(万元/百台),固定成本为C.(X 2020-06-02 …
在一个四边形中,第一次取各边中点,连接成一个新的四边形,第二次在新四边形中各边中点,再连接成一个四 2020-06-13 …
给出3个任意三条边.如何确认能否形成任意三角形?请问,如A,B,C边!只要做A+B是与大于C,A- 2020-06-17 …
在Rt△ABC中∠C=90°斜边c=5两直角边是a.b关于x的一元二次方程x²-mx+2m-2=0 2020-06-26 …
高中化学由五边形和六边形组成的C540多面体中,五边形有12个,六边形有A.250个B.260个C 2020-06-27 …