早教吧作业答案频道 -->其他-->
问题探究:如图1,Rt△ABC中,∠C=90°,∠ABC=30°,为探究Rt△ABC中30°角所对的直角边AC与斜边AB的数量关系,学习小组成员已经添加了辅助线.(1)请叙述辅助线的添法,并完成探究过程;探
题目详情
问题探究:如图1,Rt△ABC中,∠C=90°,∠ABC=30°,为探究Rt△ABC中30°角所对的直角边AC与斜边AB的数量关系,学习小组成员已经添加了辅助线.
(1)请叙述辅助线的添法,并完成探究过程;
探究应用1:如图2,Rt△ABC中,∠C=90°,∠ABC=30°,点D在线段CB上,以AD为边作等边△ADE,连接BE,为探究线段BE与DE之间的数量关系,组长已经添加了辅助线:取AB的中点F,连接EF.
(2)线段BE与DE之间的数量关系是______;并说明理由;
探究应用2:如图3,Rt△ABC中,∠C=90°,∠ABC=30°,点D在线段CB的延长线上,以AD为边作等边△ADE,连接BE.
(3)线段BE与DE之间的数量关系是______,并说明理由.

(1)请叙述辅助线的添法,并完成探究过程;
探究应用1:如图2,Rt△ABC中,∠C=90°,∠ABC=30°,点D在线段CB上,以AD为边作等边△ADE,连接BE,为探究线段BE与DE之间的数量关系,组长已经添加了辅助线:取AB的中点F,连接EF.
(2)线段BE与DE之间的数量关系是______;并说明理由;
探究应用2:如图3,Rt△ABC中,∠C=90°,∠ABC=30°,点D在线段CB的延长线上,以AD为边作等边△ADE,连接BE.
(3)线段BE与DE之间的数量关系是______,并说明理由.

▼优质解答
答案和解析
(1)如图1,作CB的垂直平分线分别交AB、BC于P、D,
∴PC=PB,
∴∠PCB=∠B=30°.
∵∠ACB=90°,
∴∠A=60°,∠ACP=60°,
∴∠APC=∠A=∠ACP=60°,
∴△ACP是等边三角形,
∴AC=AP=PC.
∴AC=AP=PB=
AB,
即AC=
AB;.
(2)BE=DE.
理由:如图2,∵F是AB的中点,
∴AF=
AB.
∵∠C=90°,∠ABC=30°,
∴AC=
AB,∠CAB=60°.
∴AC=AF.
∵△ADE是等边三角形,
∴AD=AE=DE,∠EAD=60°,
∴∠CAB=∠DAE,
∴∠CAB-∠3=∠DAE-∠3,
∴∠1=∠2.
在△ACD和△AFE中,
,
∴△ACD≌△AFE(SAS),
∴∠C=∠AFE=90°,
∴EF⊥AB.
∵F是AB的中点,
∴EF是AB的垂直平分线,
∴AE=BE,
∴BE=DE.
故答案为:BE=DE;
(3)BE=DE.
理由:如图3,取AB的中点F,连接EF,
∴AF=
AB.
∵∠C=90°,∠ABC=30°,
∴AC=
AB,∠CAB=60°.
∴AC=AF.
∵△ADE是等边三角形,
∴AD=AE=DE,∠EAD=60°,
∴∠CAB=∠DAE,
∴∠CAB-∠2=∠DAE-∠2,
∴∠1=∠3.
在△ACD和△AFE中,
,
∴△ACD≌△AFE(SAS),
∴∠C=∠AFE=90°,
∴EF⊥AB.
∵F是AB的中点,
∴EF是AB的垂直平分线,
∴AE=BE,
∴BE=DE.
故答案为:BE=DE.
∴PC=PB,

∴∠PCB=∠B=30°.
∵∠ACB=90°,
∴∠A=60°,∠ACP=60°,
∴∠APC=∠A=∠ACP=60°,
∴△ACP是等边三角形,
∴AC=AP=PC.
∴AC=AP=PB=
1 |
2 |
即AC=
1 |
2 |
(2)BE=DE.
理由:如图2,∵F是AB的中点,

∴AF=
1 |
2 |
∵∠C=90°,∠ABC=30°,
∴AC=
1 |
2 |
∴AC=AF.
∵△ADE是等边三角形,
∴AD=AE=DE,∠EAD=60°,
∴∠CAB=∠DAE,
∴∠CAB-∠3=∠DAE-∠3,
∴∠1=∠2.
在△ACD和△AFE中,
|
∴△ACD≌△AFE(SAS),
∴∠C=∠AFE=90°,
∴EF⊥AB.
∵F是AB的中点,
∴EF是AB的垂直平分线,
∴AE=BE,
∴BE=DE.
故答案为:BE=DE;
(3)BE=DE.
理由:如图3,取AB的中点F,连接EF,

∴AF=
1 |
2 |
∵∠C=90°,∠ABC=30°,
∴AC=
1 |
2 |
∴AC=AF.
∵△ADE是等边三角形,
∴AD=AE=DE,∠EAD=60°,
∴∠CAB=∠DAE,
∴∠CAB-∠2=∠DAE-∠2,
∴∠1=∠3.
在△ACD和△AFE中,
|
∴△ACD≌△AFE(SAS),
∴∠C=∠AFE=90°,
∴EF⊥AB.
∵F是AB的中点,
∴EF是AB的垂直平分线,
∴AE=BE,
∴BE=DE.
故答案为:BE=DE.
看了 问题探究:如图1,Rt△AB...的网友还看了以下:
若a+b=b+c,则a-b(c为整式)若a=b,则ac=bc(c为整式)若ac=bc,则a=b(c 2020-04-22 …
习题1.4(38页~39页)急用!明天就要交了!需要题目的我可以打出来12.如果a<b,b>0,那 2020-05-17 …
大家看看我这个矩阵的证明哪里有问题已知A,B为n阶方阵,且B=B^2,A=B+E,证明A可逆,并求 2020-06-09 …
对方阵A实行初等变换得距阵B,若|A|不等于0,则A.必有|A|=|B|B.必有|A|不等于|对方 2020-06-18 …
设P(A)>0,则下面结论正确的:A、P(B|A)P(A)≥P(A)‐P(B)B、P(B|A)P( 2020-07-18 …
集合A(-1,1),集合B(b-a,a+b),a=1是A交B的充分条件,求b的范围求高手们快帮帮小 2020-08-02 …
已知a>0,b>0,则坐标平面上四个点A(a,b),B(a,-b),C.(-a,b),D(-a,- 2020-08-02 …
3角形3边abc求证:abc≥(a+b-c)(a+c-b)(b+c-a)假设x=a+b-c>0y=a 2020-11-01 …
若向量a,b:满足绝对值a=1(a+b)⊥a,(2a+b)⊥b,则绝对值b=希望过程能详细点,若向量 2020-11-02 …
下列命题:①a⊥αb⊂α⇒a⊥b;②a⊥αa∥b⇒b⊥α;③a⊥bb⊂α⇒a⊥α;④a⊥αb∥α⇒b 2020-11-02 …