早教吧作业答案频道 -->数学-->
如图,在等腰Rt△ABC中,P是斜边BC的中点,以P为顶点的直角的两边分别与边AB,AC交于点E,F,连接EF.当∠EPF绕顶点P旋转时(点E不与A,B重合),△PEF也始终是等腰直角三角形,请你说明理
题目详情
如图,在等腰Rt△ABC中,P是斜边BC的中点,以P为顶点的直角的两边分别与边AB,AC交于点E,F,连接EF.当∠EPF绕顶点P旋转时(点E不与A,B重合),△PEF也始终是等腰直角三角形,请你说明理由.


▼优质解答
答案和解析
理由如下:
连接PA,
∵PA是等腰△ABC底边上的中线,
∴PA⊥PC(等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)).
又AB⊥AC,
∴∠1=90°-∠PAC,∠C=90°-∠PAC,
∴∠1=∠C(等量代换).
同理可得PA⊥PC,PE⊥PF,
∴∠2=90°-∠APF,∠3=90°-∠APF,
∴∠2=∠3.
由PA是Rt△ABC斜边上的中线,得:
PA=
BC=PC(直角三角形斜边上的中线等于斜边的一半).
在△PAE和△PCF中,∠1=∠C,PA=PC,∠2=∠3,
∴△PAE≌△PCF(ASA).
∴PE=PF(全等三角形对应边相等),
则△PEF始终是等腰直角三角形.

连接PA,
∵PA是等腰△ABC底边上的中线,
∴PA⊥PC(等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)).
又AB⊥AC,
∴∠1=90°-∠PAC,∠C=90°-∠PAC,
∴∠1=∠C(等量代换).
同理可得PA⊥PC,PE⊥PF,
∴∠2=90°-∠APF,∠3=90°-∠APF,
∴∠2=∠3.
由PA是Rt△ABC斜边上的中线,得:
PA=
1 |
2 |
在△PAE和△PCF中,∠1=∠C,PA=PC,∠2=∠3,
∴△PAE≌△PCF(ASA).
∴PE=PF(全等三角形对应边相等),
则△PEF始终是等腰直角三角形.
看了 如图,在等腰Rt△ABC中,...的网友还看了以下:
一定质量的理想气体发生状态变化时,其状态参量p、V、T的变化情况可能是()A.p、V、T都增大B. 2020-06-03 …
如图,P是抛物线y=2(x-2)2对称轴上的一个动点,直线x=t平行y轴,分别与y=x、抛物线交于 2020-06-13 …
机械效率和功率好像有关,下面是我分析不知可否,机械功率=有用功/总功,而有用功=P有t,总功=P总 2020-06-19 …
由不等式组围成的三角形区域内有一个内切圆,向该区域内随机投一个点,该点落在圆内的概率是关于t的函数 2020-07-30 …
已知P,S,T均为U子集,若P并S的补集等于T并P的补集,则P,S,T关系为什么急求大已知P,S, 2020-07-30 …
1.集合P={x|x2-1=0},T={-1,0,1},则P与T的关系为()A.PTB.PTC.P 2020-08-01 …
在直角坐标系中,已知点P(-2,-1)关于原点的对称点是P’,点T(t,0)是X轴上的一个动点.( 2020-08-01 …
7、关于功率,下列说法正确的是A、由P=W/t,P与W成反比B、由P=W/t,p与t成正比C、由P= 2020-10-30 …
初三二次函数问题已知Y=2(x-2)²与y=x,p是二次函数对称轴上的一点,直线y=t与二次函数与一 2020-11-04 …
设轮船A有两个发动机,轮船B有四个发动机,如果半数或半数以上的发动机没有故障,轮船就能够安全航行,现 2020-11-19 …