早教吧作业答案频道 -->数学-->
高数--微分方程已知某曲线,它的方程y=f(x)满足微分方程.yy''+(y')^2=1.并且与另一曲线y=e^-x相切于点(0,1),求曲线的方程
题目详情
高数--微分方程
已知某曲线,它的方程y=f(x)满足微分方程.yy''+(y')^2=1.并且与另一曲线y=e^-x相切于点(0,1),求曲线的方程
已知某曲线,它的方程y=f(x)满足微分方程.yy''+(y')^2=1.并且与另一曲线y=e^-x相切于点(0,1),求曲线的方程
▼优质解答
答案和解析
对于简单的熟悉的微分方程,可以灵活求
由 yy''+(y')^2=(yy')'=1 可得yy'=x+C1 (*)
又该曲线与另一曲线y=e^-x相切于点(0,1),有y(0)=1 y'(0)=-1
代入(*)得 :-1=C1
所以,有:yy'=x-1
即 ydy=(x-1)dx
两边同时积分:(1/2)y^2=(1/2)x^2-x+C2
y^2=x^2-2x+2C2
y=√(x^2-2x+2C2) 【y=-√(x^2-2x+2C2)舍去,因为y(0)=1】
1=√(2C2)
C2=1/2
所以 y=√(x^2-2x+2C2)=√(x^2-2x+1)=|x-1|=1-x 【y=x-1舍去,因为y'(0)=-1】
故曲线的方程是 x+y-1=0
令一种就是常规解法了.yy''+(y')^2=1 (缺x型)
令 y'=P(y),y''= P(dP/dy) 代入求解即可!
由 yy''+(y')^2=(yy')'=1 可得yy'=x+C1 (*)
又该曲线与另一曲线y=e^-x相切于点(0,1),有y(0)=1 y'(0)=-1
代入(*)得 :-1=C1
所以,有:yy'=x-1
即 ydy=(x-1)dx
两边同时积分:(1/2)y^2=(1/2)x^2-x+C2
y^2=x^2-2x+2C2
y=√(x^2-2x+2C2) 【y=-√(x^2-2x+2C2)舍去,因为y(0)=1】
1=√(2C2)
C2=1/2
所以 y=√(x^2-2x+2C2)=√(x^2-2x+1)=|x-1|=1-x 【y=x-1舍去,因为y'(0)=-1】
故曲线的方程是 x+y-1=0
令一种就是常规解法了.yy''+(y')^2=1 (缺x型)
令 y'=P(y),y''= P(dP/dy) 代入求解即可!
看了 高数--微分方程已知某曲线,...的网友还看了以下:
已知A(1,2),B(-1,3)点P是线段AB的三等分线求点P坐标如题 2020-04-27 …
1.已知曲线C:x^2+ycosx-y^2=0a.求dy/dxb.P(π/2,-π/2)为曲线C上 2020-06-30 …
一道数学题有疑难,已知椭圆标准方程G:x^2/24+y^2/8=1,左焦点为F,过F作一条和两坐标 2020-07-22 …
求求求已知椭圆x^+y^2/4=1的左,右两个顶点分别为A,B,曲线C是A,B以两点为顶点.离心率 2020-07-26 …
已知抛物线C的顶点在原点,对称轴是y轴,抛物线上的点M(2,m)(m>0)到抛物线焦点F的距离为2 2020-07-26 …
两点式求切线斜率求曲线方程,该曲线上任意一点(x,y)处的切线总垂直于此点与原的连线.帮我求下切线 2020-08-01 …
关于整式的题分解因式:(x+y-2xy)(x+y-2)+(xy-1)(xy-1)化解求值:(x+3y 2020-11-20 …
已知方程{xx除以(2+m)}-{yy除以(m+1)}=1表示双曲线,求m的取值范围 2020-12-21 …
F1和F2分别为双曲线xx/aa-yy/bb=1(a,b>0)的左右焦点P为左支上任意点,若|PF2 2020-12-31 …
x=sinty=cos2t在t=π/4处;答案是2x√2+y-2=0x=3at/(1+t^2)y=3 2021-02-07 …