早教吧作业答案频道 -->数学-->
若复数z的虚部不为零,且z^3+z+1=0,则A.|z|<1B.|z|=1C.1<|z|<根号2D.|z|≥根号2设复数z满足z^2+z+1=0,则z^3-z-1/z+1/z^3=A.-1B.1C.2D.3最好能提供复数方程的相关资料
题目详情
若复数z的虚部不为零,且z^3+z+1=0,则 A.|z|<1 B.|z|=1 C.1<|z|<根号2 D.|z|≥根号2
设复数z满足z^2+z+1=0,则z^3-z-1/z+1/z^3=
A.-1 B.1 C.2 D.3 最好能提供复数方程的相关资料
设复数z满足z^2+z+1=0,则z^3-z-1/z+1/z^3=
A.-1 B.1 C.2 D.3 最好能提供复数方程的相关资料
▼优质解答
答案和解析
第一题:
假设 z=a+bi,(a,b为实数) 由z的虚部不为零,可知b≠0
可得: (a+bi)^3+(a+bi)+1=0
展开得:(a^3+3a^2bi-3ab^2-b^3i)+a+bi+1=0
得 a^3-3ab^2+a+1=0 ①
3a^2b-b^3+b=0,两边除以b得 3a^2-b^2+1=0
得 b^2=3a^2+1 ②
☆☆☆☆ 因为a^2+b^2=4a^2+1>1,得|z|>1
代入②到①,得 a^3-3a(3a^2+1)+a+1=0,化简得 -8a^3-2a+1=0
变形: (-2a)^2+(-2a)+1 = 0 ,得 (2a) = 1/[1+(-2a)^2]
由 (-2a)^2>0,1+(-2a)^2>1,得 2a
假设 z=a+bi,(a,b为实数) 由z的虚部不为零,可知b≠0
可得: (a+bi)^3+(a+bi)+1=0
展开得:(a^3+3a^2bi-3ab^2-b^3i)+a+bi+1=0
得 a^3-3ab^2+a+1=0 ①
3a^2b-b^3+b=0,两边除以b得 3a^2-b^2+1=0
得 b^2=3a^2+1 ②
☆☆☆☆ 因为a^2+b^2=4a^2+1>1,得|z|>1
代入②到①,得 a^3-3a(3a^2+1)+a+1=0,化简得 -8a^3-2a+1=0
变形: (-2a)^2+(-2a)+1 = 0 ,得 (2a) = 1/[1+(-2a)^2]
由 (-2a)^2>0,1+(-2a)^2>1,得 2a
看了 若复数z的虚部不为零,且z^...的网友还看了以下:
设x=log214,y=212,z=7-2,则x,y,z间的大小关系为()A.y<z<xB.z<x 2020-07-19 …
已知幂函数y=f(x)=x的(-2m-m+3)次方,其中m∈{x︳-2<x<2,x∈Z},已知幂函 2020-08-01 …
1.如果一个直角三角形的两条直角边为x和y,并且x≤y,z是斜边,则下面的关系式中一定成立的是() 2020-08-02 …
设x、y、z均为正实数,且满足zx+y<xy+z<yz+x,则x、y、z三个数的大小关系是()A.z 2020-10-30 …
设整数n≥4,集合X={1,2,3,…,n}.令集合S={(x,y,z)|x,y,z∈X,且三条件x 2020-10-31 …
设整数n≥4,集合X={1,2,3,…,n}.令集合S={(x,y,z)|x,y,z∈X,且三条件x 2020-10-31 …
1已知x.y,z为锐角,cos²x+cos²y+cos²z=1,求证:3π/4<x+y+z<π22已 2020-10-31 …
已知x<0,y>0,z<0,且|z|>|y|>|x|,试比较x,y,z,x+y,x已知x<0,y>0 2020-11-01 …
设a>b>0,a+b=1,且x=logab,y=log(1a+1b)ab,z=log1ba,则x、y 2020-11-01 …
X、Y、Z、R、Q五种前四周期元素,原子序数依次增大,其中X、Y、Q分属不同周期且价电子数之和为13 2020-12-05 …