早教吧作业答案频道 -->数学-->
1.向量a={2,-1,-2},b={1,1,z},问z为何値时两向量夹角最小,并求出最小值2判断下列两直线L1:X+1/1=y/1=z-1/2,L2:x/1=y+1/3=z-2/4是否在同一平面上,若不在同一平面上,求两直线间的距离.或指明要点
题目详情
1.向量a={2,-1,-2},b={1,1,z},问z为何値时两向量夹角最小,并求出最小值
2判断下列两直线L1:X+1/1=y/1=z-1/2,L2:x/1=y+1/3=z-2/4是否在同一平面上,若不在同一平面上,求两直线间的距离
.或指明要点
2判断下列两直线L1:X+1/1=y/1=z-1/2,L2:x/1=y+1/3=z-2/4是否在同一平面上,若不在同一平面上,求两直线间的距离
.或指明要点
▼优质解答
答案和解析
两向量夹角的余弦 = 2向量的点积/[2向量的模的乘积]
当2向量的点积/[2向量的模的乘积]达到最大时,两向量夹角的余弦达到最大,夹角最小.
|a| = 3,|b|=(2+z^2)^(1/2).
a*b=2-1-2z=1-2z
f(z)=a*b/[|a||b|]=(1-2z)/[3(2+z^2)^(1/2)]
f'(z) = (1/3){-2(2+z^2)^(1/2)-(1-2z)z/(2+z^2)^(1/2)}/(2+z^2) = (1/3){-2(2+z^2) -(1-2z)z}/(2+z^2)^(3/2)
= (1/3){-4-z}/(2+z^2)^(3/2)
z < -4时,f'(z)>0,f(z)单调递增.
z > -4是,f'(z)<0,f(z)单调递减.
z = -4时,f(z)达到最大值f(-4)=(1+8)/[3(2+16)^(1/2)]=1/2^(1/2)
此时,夹角的最小值=arccos(1/2^(1/2))=PI/4.
2,
L1的方向向量=(1,1,2)
L2的方向向量=(1,3,4)
若L1,L2在同一平面上,则该平面的1个法向量T=(1,1,2)与(1,3,4)的叉积 = (-2,-2,2).
点A(-1,0,1)在L1上,在该平面上.则该平面的方程为
0 = -2(x+1)-2y+2(z-1)=-2x-2-2y+2z-2,
0 = -x-y+z-2,
点B(0,-1,2)在L2上,也应该在平面上.
0 = -0+1-2-2=-3矛盾.因此,L1,L2不在同一个平面上.
L1,L2之间的距离 = 向量AB在向量T上的投影的绝对值.
AB=(1,-1,1),
T = (-2,-2,2),|T|=2*3^(1/2)
向量AB在向量T上的投影 = AB*T/|T| = [-2+2+2]/[2*3^(1/2)]
= 1/3^(1/2)
所以,
L1,L2之间的距离 = 3^(-1/2).
当2向量的点积/[2向量的模的乘积]达到最大时,两向量夹角的余弦达到最大,夹角最小.
|a| = 3,|b|=(2+z^2)^(1/2).
a*b=2-1-2z=1-2z
f(z)=a*b/[|a||b|]=(1-2z)/[3(2+z^2)^(1/2)]
f'(z) = (1/3){-2(2+z^2)^(1/2)-(1-2z)z/(2+z^2)^(1/2)}/(2+z^2) = (1/3){-2(2+z^2) -(1-2z)z}/(2+z^2)^(3/2)
= (1/3){-4-z}/(2+z^2)^(3/2)
z < -4时,f'(z)>0,f(z)单调递增.
z > -4是,f'(z)<0,f(z)单调递减.
z = -4时,f(z)达到最大值f(-4)=(1+8)/[3(2+16)^(1/2)]=1/2^(1/2)
此时,夹角的最小值=arccos(1/2^(1/2))=PI/4.
2,
L1的方向向量=(1,1,2)
L2的方向向量=(1,3,4)
若L1,L2在同一平面上,则该平面的1个法向量T=(1,1,2)与(1,3,4)的叉积 = (-2,-2,2).
点A(-1,0,1)在L1上,在该平面上.则该平面的方程为
0 = -2(x+1)-2y+2(z-1)=-2x-2-2y+2z-2,
0 = -x-y+z-2,
点B(0,-1,2)在L2上,也应该在平面上.
0 = -0+1-2-2=-3矛盾.因此,L1,L2不在同一个平面上.
L1,L2之间的距离 = 向量AB在向量T上的投影的绝对值.
AB=(1,-1,1),
T = (-2,-2,2),|T|=2*3^(1/2)
向量AB在向量T上的投影 = AB*T/|T| = [-2+2+2]/[2*3^(1/2)]
= 1/3^(1/2)
所以,
L1,L2之间的距离 = 3^(-1/2).
看了 1.向量a={2,-1,-2...的网友还看了以下:
同一平面内的两条直线a,b夹角为α,其中a为异面直线l的射影,l,a夹角为β,求l,b夹角. 2020-05-16 …
(2013•铁岭)如图,在平面直角坐标中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A 2020-06-18 …
如图,正方形ABCB1中,AB=1.AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方 2020-07-09 …
如图,正方形ABCB1中,AB=1,AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方 2020-07-09 …
已知曲线C:x24+y29=1,直线l:x=2+ty=2-2t(t为参数)(Ⅰ)写出曲线C的参数方 2020-07-17 …
(2014•河北区一模)如图1,在△ABC中,∠ACB=90°,经过点B的直线l(l不与直线AB重 2020-07-21 …
在△ABC中,∠ACB=90°.经过点B的直线l(l不与直线AB重合)与直线BC的夹角等于∠ABC 2020-07-22 …
若直线l的方向向量与平面α的法向量的夹角为120°,则直线l与平面α的夹角为()A.30°B.60 2020-07-31 …
长为L的细线,栓一质量为m的小球,长为L的细线,栓一质量为m的小球,一端固定于O点。让其在水平面内 2020-07-31 …
线段AB与直线l夹角为α,且cos=五分之四,若正投影A'B'长为8cm.则AB为.各位亲爱的同仁请 2020-12-21 …