早教吧作业答案频道 -->数学-->
1.向量a={2,-1,-2},b={1,1,z},问z为何値时两向量夹角最小,并求出最小值2判断下列两直线L1:X+1/1=y/1=z-1/2,L2:x/1=y+1/3=z-2/4是否在同一平面上,若不在同一平面上,求两直线间的距离.或指明要点
题目详情
1.向量a={2,-1,-2},b={1,1,z},问z为何値时两向量夹角最小,并求出最小值
2判断下列两直线L1:X+1/1=y/1=z-1/2,L2:x/1=y+1/3=z-2/4是否在同一平面上,若不在同一平面上,求两直线间的距离
.或指明要点
2判断下列两直线L1:X+1/1=y/1=z-1/2,L2:x/1=y+1/3=z-2/4是否在同一平面上,若不在同一平面上,求两直线间的距离
.或指明要点
▼优质解答
答案和解析
两向量夹角的余弦 = 2向量的点积/[2向量的模的乘积]
当2向量的点积/[2向量的模的乘积]达到最大时,两向量夹角的余弦达到最大,夹角最小.
|a| = 3,|b|=(2+z^2)^(1/2).
a*b=2-1-2z=1-2z
f(z)=a*b/[|a||b|]=(1-2z)/[3(2+z^2)^(1/2)]
f'(z) = (1/3){-2(2+z^2)^(1/2)-(1-2z)z/(2+z^2)^(1/2)}/(2+z^2) = (1/3){-2(2+z^2) -(1-2z)z}/(2+z^2)^(3/2)
= (1/3){-4-z}/(2+z^2)^(3/2)
z < -4时,f'(z)>0,f(z)单调递增.
z > -4是,f'(z)<0,f(z)单调递减.
z = -4时,f(z)达到最大值f(-4)=(1+8)/[3(2+16)^(1/2)]=1/2^(1/2)
此时,夹角的最小值=arccos(1/2^(1/2))=PI/4.
2,
L1的方向向量=(1,1,2)
L2的方向向量=(1,3,4)
若L1,L2在同一平面上,则该平面的1个法向量T=(1,1,2)与(1,3,4)的叉积 = (-2,-2,2).
点A(-1,0,1)在L1上,在该平面上.则该平面的方程为
0 = -2(x+1)-2y+2(z-1)=-2x-2-2y+2z-2,
0 = -x-y+z-2,
点B(0,-1,2)在L2上,也应该在平面上.
0 = -0+1-2-2=-3矛盾.因此,L1,L2不在同一个平面上.
L1,L2之间的距离 = 向量AB在向量T上的投影的绝对值.
AB=(1,-1,1),
T = (-2,-2,2),|T|=2*3^(1/2)
向量AB在向量T上的投影 = AB*T/|T| = [-2+2+2]/[2*3^(1/2)]
= 1/3^(1/2)
所以,
L1,L2之间的距离 = 3^(-1/2).
当2向量的点积/[2向量的模的乘积]达到最大时,两向量夹角的余弦达到最大,夹角最小.
|a| = 3,|b|=(2+z^2)^(1/2).
a*b=2-1-2z=1-2z
f(z)=a*b/[|a||b|]=(1-2z)/[3(2+z^2)^(1/2)]
f'(z) = (1/3){-2(2+z^2)^(1/2)-(1-2z)z/(2+z^2)^(1/2)}/(2+z^2) = (1/3){-2(2+z^2) -(1-2z)z}/(2+z^2)^(3/2)
= (1/3){-4-z}/(2+z^2)^(3/2)
z < -4时,f'(z)>0,f(z)单调递增.
z > -4是,f'(z)<0,f(z)单调递减.
z = -4时,f(z)达到最大值f(-4)=(1+8)/[3(2+16)^(1/2)]=1/2^(1/2)
此时,夹角的最小值=arccos(1/2^(1/2))=PI/4.
2,
L1的方向向量=(1,1,2)
L2的方向向量=(1,3,4)
若L1,L2在同一平面上,则该平面的1个法向量T=(1,1,2)与(1,3,4)的叉积 = (-2,-2,2).
点A(-1,0,1)在L1上,在该平面上.则该平面的方程为
0 = -2(x+1)-2y+2(z-1)=-2x-2-2y+2z-2,
0 = -x-y+z-2,
点B(0,-1,2)在L2上,也应该在平面上.
0 = -0+1-2-2=-3矛盾.因此,L1,L2不在同一个平面上.
L1,L2之间的距离 = 向量AB在向量T上的投影的绝对值.
AB=(1,-1,1),
T = (-2,-2,2),|T|=2*3^(1/2)
向量AB在向量T上的投影 = AB*T/|T| = [-2+2+2]/[2*3^(1/2)]
= 1/3^(1/2)
所以,
L1,L2之间的距离 = 3^(-1/2).
看了 1.向量a={2,-1,-2...的网友还看了以下:
数学问题3到一、若a小m=3,a小n=5,求(1)a小m+n的值,(2)a小3m-2n的值二、已知 2020-04-07 …
急.我给积分的a,b都属于正实数,且a2+b2=a+b,求a+b最大值?a,b属于正实数,且a+b 2020-05-23 …
黑白低调人像画面的光比可比彩色低调人像画面的光比( )。A.小一些B.大一些C.艳一些D.柔一些 2020-05-31 …
△ABC中,若∠A:∠B=5:7,且∠C比∠A小7°,求∠C的度数 2020-06-06 …
点P在双曲线y=12/x上点P的横坐标为a纵坐标比a小4,求点P的横坐标如图 2020-06-21 …
绝对值计算求│a-1│+│a-2│+│a-3│+│的最小值求│a-1│+│a-2│+│a-3│+│ 2020-07-13 …
已知∠A与∠B互为补角,并且∠B的一般比∠A小30°,求∠A和∠B 2020-07-30 …
已知复数Z(小一,在右下角)=23i,z(小二,在右下角)-i,(a∈R)(1)若z(小一)·z( 2020-08-02 …
已知∠a和∠b互为补角,并且∠b的一半比∠a小30°,求∠a、∠b的度数. 2020-08-02 …
已知∠a和∠b互为补角而且∠b的一般比∠a小30°求∠a.∠b.列方程解 2020-08-02 …