早教吧作业答案频道 -->数学-->
1.向量a={2,-1,-2},b={1,1,z},问z为何値时两向量夹角最小,并求出最小值2判断下列两直线L1:X+1/1=y/1=z-1/2,L2:x/1=y+1/3=z-2/4是否在同一平面上,若不在同一平面上,求两直线间的距离.或指明要点
题目详情
1.向量a={2,-1,-2},b={1,1,z},问z为何値时两向量夹角最小,并求出最小值
2判断下列两直线L1:X+1/1=y/1=z-1/2,L2:x/1=y+1/3=z-2/4是否在同一平面上,若不在同一平面上,求两直线间的距离
.或指明要点
2判断下列两直线L1:X+1/1=y/1=z-1/2,L2:x/1=y+1/3=z-2/4是否在同一平面上,若不在同一平面上,求两直线间的距离
.或指明要点
▼优质解答
答案和解析
两向量夹角的余弦 = 2向量的点积/[2向量的模的乘积]
当2向量的点积/[2向量的模的乘积]达到最大时,两向量夹角的余弦达到最大,夹角最小.
|a| = 3,|b|=(2+z^2)^(1/2).
a*b=2-1-2z=1-2z
f(z)=a*b/[|a||b|]=(1-2z)/[3(2+z^2)^(1/2)]
f'(z) = (1/3){-2(2+z^2)^(1/2)-(1-2z)z/(2+z^2)^(1/2)}/(2+z^2) = (1/3){-2(2+z^2) -(1-2z)z}/(2+z^2)^(3/2)
= (1/3){-4-z}/(2+z^2)^(3/2)
z < -4时,f'(z)>0,f(z)单调递增.
z > -4是,f'(z)<0,f(z)单调递减.
z = -4时,f(z)达到最大值f(-4)=(1+8)/[3(2+16)^(1/2)]=1/2^(1/2)
此时,夹角的最小值=arccos(1/2^(1/2))=PI/4.
2,
L1的方向向量=(1,1,2)
L2的方向向量=(1,3,4)
若L1,L2在同一平面上,则该平面的1个法向量T=(1,1,2)与(1,3,4)的叉积 = (-2,-2,2).
点A(-1,0,1)在L1上,在该平面上.则该平面的方程为
0 = -2(x+1)-2y+2(z-1)=-2x-2-2y+2z-2,
0 = -x-y+z-2,
点B(0,-1,2)在L2上,也应该在平面上.
0 = -0+1-2-2=-3矛盾.因此,L1,L2不在同一个平面上.
L1,L2之间的距离 = 向量AB在向量T上的投影的绝对值.
AB=(1,-1,1),
T = (-2,-2,2),|T|=2*3^(1/2)
向量AB在向量T上的投影 = AB*T/|T| = [-2+2+2]/[2*3^(1/2)]
= 1/3^(1/2)
所以,
L1,L2之间的距离 = 3^(-1/2).
当2向量的点积/[2向量的模的乘积]达到最大时,两向量夹角的余弦达到最大,夹角最小.
|a| = 3,|b|=(2+z^2)^(1/2).
a*b=2-1-2z=1-2z
f(z)=a*b/[|a||b|]=(1-2z)/[3(2+z^2)^(1/2)]
f'(z) = (1/3){-2(2+z^2)^(1/2)-(1-2z)z/(2+z^2)^(1/2)}/(2+z^2) = (1/3){-2(2+z^2) -(1-2z)z}/(2+z^2)^(3/2)
= (1/3){-4-z}/(2+z^2)^(3/2)
z < -4时,f'(z)>0,f(z)单调递增.
z > -4是,f'(z)<0,f(z)单调递减.
z = -4时,f(z)达到最大值f(-4)=(1+8)/[3(2+16)^(1/2)]=1/2^(1/2)
此时,夹角的最小值=arccos(1/2^(1/2))=PI/4.
2,
L1的方向向量=(1,1,2)
L2的方向向量=(1,3,4)
若L1,L2在同一平面上,则该平面的1个法向量T=(1,1,2)与(1,3,4)的叉积 = (-2,-2,2).
点A(-1,0,1)在L1上,在该平面上.则该平面的方程为
0 = -2(x+1)-2y+2(z-1)=-2x-2-2y+2z-2,
0 = -x-y+z-2,
点B(0,-1,2)在L2上,也应该在平面上.
0 = -0+1-2-2=-3矛盾.因此,L1,L2不在同一个平面上.
L1,L2之间的距离 = 向量AB在向量T上的投影的绝对值.
AB=(1,-1,1),
T = (-2,-2,2),|T|=2*3^(1/2)
向量AB在向量T上的投影 = AB*T/|T| = [-2+2+2]/[2*3^(1/2)]
= 1/3^(1/2)
所以,
L1,L2之间的距离 = 3^(-1/2).
看了 1.向量a={2,-1,-2...的网友还看了以下:
已知x,y,z∈R+,x+y+z=3①求(1/x)+(1/y)+(1/z)的最小值②证明:已知x,y 2020-03-30 …
(高分)解一条数学题里的一步,我看不明白是什么,请指出实数x,y和z满足x+y+z=5,xy+yz 2020-05-16 …
设f(z),g(z)都在简单闭曲线c上及c内解析,且在c上f(z)=g(z),证明:在c内也有f( 2020-06-18 …
设a是f(z)的孤立奇点,证明;若f(z)为奇函数,则Res[f(z),a]=Res[f(z),- 2020-06-26 …
已知y与x成正比例,x与z+1成正比例那么y与z是正比例函数关系吗?请说明理由.如果z=1时,y= 2020-06-27 …
三元一次函数求最大值已知x+y+z=c(常数)问1/x+1/y+1/z取最大值时,是否有x=y=z 2020-07-17 …
设X,Y,Z都是整数,满足条件(X-Y)(Y-Z)(Z-X)=X+Y+Z,试证明X+Y+Z能被27 2020-07-21 …
是否存在复数z,使其满足z'*z+2iz'=3+ai(a∈R)?如果存在,求出z的值,如果不存在, 2020-08-02 …
小明、小李、小刚三位同学分别发出明信片x,y,z张.如果已知x,y,z的最小公倍数是60,x和y的 2020-08-03 …
若x/(y+z+t)=y/(z+t+x)=z/(t+x+y)=t/(x+y+z)即f=(x+y)/( 2020-10-30 …