早教吧作业答案频道 -->数学-->
一阶线性微分方程dy/dx+P(x)y=Q(x)的通解公式怎么理解?
题目详情
一阶线性微分方程dy/dx+P(x)y=Q(x)的通解公式怎么理解?
▼优质解答
答案和解析
一阶线性微分方程dy/dx+P(x)y=Q(x)的通解公式应用“常数变易法”求解.
∵由齐次方程dy/dx+P(x)y=0
==>dy/dx=-P(x)y
==>dy/y=-P(x)dx
==>ln│y│=-∫P(x)dx+ln│C│ (C是积分常数)
==>y=Ce^(-∫P(x)dx)
∴此齐次方程的通解是y=Ce^(-∫P(x)dx)
于是,根据常数变易法,设一阶线性微分方程dy/dx+P(x)y=Q(x)的解为
y=C(x)e^(-∫P(x)dx) (C(x)是关于x的函数)
代入dy/dx+P(x)y=Q(x),化简整理得
C'(x)e^(-∫P(x)dx)=Q(x)
==>C'(x)=Q(x)e^(∫P(x)dx)
==>C(x)=∫Q(x)e^(∫P(x)dx)dx+C (C是积分常数)
==>y=C(x)e^(-∫P(x)dx)=[∫Q(x)e^(∫P(x)dx)dx+C]e^(-∫P(x)dx)
故一阶线性微分方程dy/dx+P(x)y=Q(x)的通解公式是
y=[∫Q(x)e^(∫P(x)dx)dx+C]e^(-∫P(x)dx) (C是积分常数).
∵由齐次方程dy/dx+P(x)y=0
==>dy/dx=-P(x)y
==>dy/y=-P(x)dx
==>ln│y│=-∫P(x)dx+ln│C│ (C是积分常数)
==>y=Ce^(-∫P(x)dx)
∴此齐次方程的通解是y=Ce^(-∫P(x)dx)
于是,根据常数变易法,设一阶线性微分方程dy/dx+P(x)y=Q(x)的解为
y=C(x)e^(-∫P(x)dx) (C(x)是关于x的函数)
代入dy/dx+P(x)y=Q(x),化简整理得
C'(x)e^(-∫P(x)dx)=Q(x)
==>C'(x)=Q(x)e^(∫P(x)dx)
==>C(x)=∫Q(x)e^(∫P(x)dx)dx+C (C是积分常数)
==>y=C(x)e^(-∫P(x)dx)=[∫Q(x)e^(∫P(x)dx)dx+C]e^(-∫P(x)dx)
故一阶线性微分方程dy/dx+P(x)y=Q(x)的通解公式是
y=[∫Q(x)e^(∫P(x)dx)dx+C]e^(-∫P(x)dx) (C是积分常数).
看了 一阶线性微分方程dy/dx+...的网友还看了以下:
我国处于社会主义初级阶段,制定一切方针政策都必须以这个国情为依据,这是因为A.社会主义初级阶段是能 2020-05-13 …
拼音首字组成的D.G.E.D.G.H.D.D.G.Q.O.B.C.A.B有点难度呵呵~ 2020-06-11 …
高中物理电容器在电容器中,保持开关闭合,增大d.C,U,Q怎么变化?增大S.C,U,Q怎么变化?在 2020-06-12 …
求光栅常数d一束具有两种波长a和d的平行光垂直照射到一衍射光栅上,测得波长a的第三极主极大衍射角和 2020-07-10 …
C中求三角形面积问题#include#includevoidmain(){doublea,b,c, 2020-07-23 …
C语言求三角形面积问题#include#includevoidmain(){doublea,b,c 2020-07-23 …
请教一下数据库里的关系题1、在关系模式R(A,B,C,D)中,有函数依赖集F={B→C,C→D,D→ 2020-11-03 …
请问谁知道用matlab求解多元超越方程组的方法或思路或函数不?形如:a*(1+a+a^3+d+d^ 2020-12-14 …
关于c赋值#includemain(){\x05intb=3;\x05intarr[]={6,7,8 2020-12-31 …
关于各阶段人口特征描述正确的是()A.A阶段老龄化严重,城市化水平下降B.B阶段出现高出生率的原因是 2021-01-14 …