早教吧作业答案频道 -->其他-->
在▱ABCD中,E是AD上一点,AE=AB,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.(1)如图1,当EF与AB相交时,若∠EAB=60°,求证:EG=AG+BG;(2)如图2,当EF与AB相交时,若∠EAB=α(0°
题目详情
在▱ABCD中,E是AD上一点,AE=AB,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.
(1)如图1,当EF与AB相交时,若∠EAB=60°,求证:EG=AG+BG;
(2)如图2,当EF与AB相交时,若∠EAB=α(0°<α<90°),请你直接写出线段EG、AG、BG之间的数量关系(用含α的式子表示);
(3)如图3,当EF与CD相交时,且∠EAB=90°,请你写出线段EG、AG、BG之间的数量关系,并证明你的结论.

(1)如图1,当EF与AB相交时,若∠EAB=60°,求证:EG=AG+BG;
(2)如图2,当EF与AB相交时,若∠EAB=α(0°<α<90°),请你直接写出线段EG、AG、BG之间的数量关系(用含α的式子表示);
(3)如图3,当EF与CD相交时,且∠EAB=90°,请你写出线段EG、AG、BG之间的数量关系,并证明你的结论.

▼优质解答
答案和解析
(1)证明:如图,作∠GAH=∠EAB交GE于点H.
∴∠GAB=∠HAE.
∵∠EAB=∠EGB,∠APE=∠BPG,
∴∠ABG=∠AEH.
在△ABG和△AEH中,
,
∴△ABG≌△AEH(ASA).
∴BG=EH,AG=AH.
∵∠GAH=∠EAB=60°,
∴△AGH是等边三角形.
∴AG=HG.
∴EG=AG+BG.
(2)如图,作∠GAH=∠EAB交GE于点H.作AM⊥EG于点M,
∴∠GAB=∠HAE.
∵∠EAB=∠EGB,∠APE=∠BPG,
∴∠ABG=∠AEH.
在△ABG和△AEH中,
,
∴△ABG≌△AEH(ASA).
∴BG=EH,AG=AH.
∵∠GAH=∠EAB=α,
∴GM=MH=
GH,∠GAM=∠HAM=
α,
∵GM=MH=AG•sin
,
∴EG=GH+BG.
∴EG=2AGsin
+BG.
(3)EG=
AG−BG.
如图,作∠GAH=∠EAB交GE于点H.
∴∠GAB=∠HAE.
∵∠EGB=∠EAB=90°,
∴∠ABG+∠AEG=∠AEG+∠AEH=180°.
∴∠ABG=∠AEH.
∵又AB=AE,
∴△ABG≌△AEH.
∴BG=EH,AG=AH.
∵∠GAH=∠EAB=90°,
∴△AGH是等腰直角三角形.
∴
AG=HG.
∴EG=
AG−BG.

∴∠GAB=∠HAE.
∵∠EAB=∠EGB,∠APE=∠BPG,
∴∠ABG=∠AEH.
在△ABG和△AEH中,
|
∴△ABG≌△AEH(ASA).
∴BG=EH,AG=AH.
∵∠GAH=∠EAB=60°,
∴△AGH是等边三角形.
∴AG=HG.
∴EG=AG+BG.
(2)如图,作∠GAH=∠EAB交GE于点H.作AM⊥EG于点M,
∴∠GAB=∠HAE.
∵∠EAB=∠EGB,∠APE=∠BPG,
∴∠ABG=∠AEH.
在△ABG和△AEH中,
|
∴△ABG≌△AEH(ASA).

∴BG=EH,AG=AH.
∵∠GAH=∠EAB=α,
∴GM=MH=
1 |
2 |
1 |
2 |
∵GM=MH=AG•sin
α |
2 |
∴EG=GH+BG.
∴EG=2AGsin
α |
2 |
(3)EG=
2 |
如图,作∠GAH=∠EAB交GE于点H.
∴∠GAB=∠HAE.
∵∠EGB=∠EAB=90°,

∴∠ABG+∠AEG=∠AEG+∠AEH=180°.
∴∠ABG=∠AEH.
∵又AB=AE,
∴△ABG≌△AEH.
∴BG=EH,AG=AH.
∵∠GAH=∠EAB=90°,
∴△AGH是等腰直角三角形.
∴
2 |
∴EG=
2 |
看了 在▱ABCD中,E是AD上一...的网友还看了以下:
求球面:x^2+y^2+z^2=a^2含在圆柱面x^2+y^2=ax内部的那部分面积.由于对称可以 2020-05-16 …
求证:1\a(a+d)+1\(a+d)(a+2d)+.+1\[a+(n-2)d][a+(n-1)d 2020-06-12 …
两个四元方程,找所有解找到所有无序组合(a,b,c,d),其中他们都是实数,符合这两个方程:a+b 2020-06-19 …
如果a,b,c,d是不为0的整数满足1/a+1/b=1/c1/b+1/c=1/d1/c+1/d=1 2020-07-09 …
若有以下程序#include“stdio.h”main(){inta=1,b=2,c=3,d=4; 2020-07-23 …
已知函数f(x)=x+1,g(x)=x的平方,D=[-1,a](a>-1),求使集合A={yly= 2020-08-02 …
有4个正整数a,b,c,d他们满足1/a+1/b+1/c+1/d=1,a小于b小于c小于d那么a+b 2020-11-24 …
数学题请教,并教解题思路有四个正整数a、b、c、d.它们满足1/a+1/b+1/c+1/d=1,a< 2020-12-12 …
將一個正數表示成科學記號a×10n,下列有關a、n的敘述何者正確?()A.1≤a<10,n為正整數B 2020-12-14 …
如果a、b、c、d都是不为零的整数,且1/a+1/b=1/c,1/b+1/c=1/d,1/c+1/d 2021-02-01 …