早教吧作业答案频道 -->其他-->
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证:必存在ξ∈(0,3),使f′(ξ)=0.
题目详情
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.
试证:必存在ξ∈(0,3),使f′(ξ)=0.
试证:必存在ξ∈(0,3),使f′(ξ)=0.
▼优质解答
答案和解析
因为f(x)在[0,3]上连续,
所以f(x)在[0,2]上连续,且在[0,2]上必有最大值M和最小值m,
于是:m≤f(0)≤M,m≤f(1)≤M,m≤f(2)≤M,
故:m≤
≤M,
由介值定理知,至少存在一点c∈[0,2],使得:
f(c)=
=1,
又由:f(c)=1=f(3),且f(x)在[c,3]上连续,在(c,3)内可导,满足罗尔定理的条件,
故:必存在ξ∈(c,3)⊂(0,3),使f′(ξ)=0.
因为f(x)在[0,3]上连续,
所以f(x)在[0,2]上连续,且在[0,2]上必有最大值M和最小值m,
于是:m≤f(0)≤M,m≤f(1)≤M,m≤f(2)≤M,
故:m≤
f(0)+f(1)+f(2) |
3 |
由介值定理知,至少存在一点c∈[0,2],使得:
f(c)=
f(0)+f(1)+f(2) |
3 |
又由:f(c)=1=f(3),且f(x)在[c,3]上连续,在(c,3)内可导,满足罗尔定理的条件,
故:必存在ξ∈(c,3)⊂(0,3),使f′(ξ)=0.
看了 设函数f(x)在[0,3]上...的网友还看了以下:
高数问题十分紧急设函数f(x)在(a,b)上可导连续,f(a)=0,a>0求证存在在ξ在高数问题十 2020-05-14 …
函数f(x)在(0,+∞)连续,f(1)=5/2,对所有x,t∈(0,+∞),满足∫(1,x)f( 2020-05-19 …
高数:若f(x)在[a,b]区间连续,F(x)=[a,x定积分区间]f(x)d(x)+[b,x定积 2020-06-07 …
设f(x)=根号(x+1)-2/(x-3),要使f(x)在x=3处连续,则f(3)=? 2020-06-13 …
已知f(z)在[-1,1]连续证∫∫∫f'(z)dv=2π∫zf(z)dz三重积分区域是中心为原点 2020-06-22 …
设函数f(x)在点x0及其邻近有定义,且有f(x0+Δx)-f(x0)=aΔx+b(Δx)^2.a 2020-07-22 …
高数间断点问题设f(x)在R上连续,且f(x)不等于0,g(x)在R上有定义,且有间断点,则下列陈 2020-07-30 …
已知定义在R上的函数f(x)是奇函数且满足f(3/2-x)=f(x),f(3/2-x)=f(x)f 2020-08-01 …
1)设f(x)在[a,b]上可微,且f(a)=f(b)=0,证明:在(a,b)内存在一点ξ,使f'( 2020-12-28 …
函数y=f(x)在x=a点连续是f(x)在点x=a点有极限的什么条件,详见下:函数y=f(x)在x= 2021-02-13 …