早教吧作业答案频道 -->其他-->
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证:必存在ξ∈(0,3),使f′(ξ)=0.
题目详情
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.
试证:必存在ξ∈(0,3),使f′(ξ)=0.
试证:必存在ξ∈(0,3),使f′(ξ)=0.
▼优质解答
答案和解析
因为f(x)在[0,3]上连续,
所以f(x)在[0,2]上连续,且在[0,2]上必有最大值M和最小值m,
于是:m≤f(0)≤M,m≤f(1)≤M,m≤f(2)≤M,
故:m≤
≤M,
由介值定理知,至少存在一点c∈[0,2],使得:
f(c)=
=1,
又由:f(c)=1=f(3),且f(x)在[c,3]上连续,在(c,3)内可导,满足罗尔定理的条件,
故:必存在ξ∈(c,3)⊂(0,3),使f′(ξ)=0.
因为f(x)在[0,3]上连续,
所以f(x)在[0,2]上连续,且在[0,2]上必有最大值M和最小值m,
于是:m≤f(0)≤M,m≤f(1)≤M,m≤f(2)≤M,
故:m≤
| f(0)+f(1)+f(2) |
| 3 |
由介值定理知,至少存在一点c∈[0,2],使得:
f(c)=
| f(0)+f(1)+f(2) |
| 3 |
又由:f(c)=1=f(3),且f(x)在[c,3]上连续,在(c,3)内可导,满足罗尔定理的条件,
故:必存在ξ∈(c,3)⊂(0,3),使f′(ξ)=0.
看了 设函数f(x)在[0,3]上...的网友还看了以下:
对于任意正数a,b有f(ab)=f(a)+f(b),且f(1)的导数=1 证明f(x) 在零到正无 2020-05-13 …
求助高数罗尔定理的一个细节问题F(x)在[0,1]可导,F(1)=F(a),a∈[0,1/2],由 2020-05-13 …
函数问题f(x)二阶连续可导,f(0)=f(1)=0,f(x)在区间[0,1]上的最小函数问题f( 2020-05-14 …
两个可导函数乘积是否可导?为什么?例题:f(x)在a,b上连续,在(a,b)内可导,且f(a)=0 2020-05-14 …
函数f(x)在[0,+∞)上可导f(0)=1,且满足等式f′(x)+f(x)-1x+1∫x0f(t 2020-06-12 …
若函数f(x)在R上可导,且f(x)>f'(x),当a>b时,下列不等式成立的是A.e^af(若函 2020-07-29 …
微积分设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(0)=f(1)=0.证明:至少微 2020-07-31 …
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(已知函 2020-11-02 …
导数定义领域设f(x)在x=x.的某领域内有定义,在x=x.的某去心领域内可导,若f'(x.)存在且 2020-11-03 …
函数f(x)在x=-1处不一定可导,如f(x)=|x+1|=x+1,x>-10x=-1-x-1,x< 2020-11-20 …