早教吧作业答案频道 -->数学-->
(2013•南京)已知二次函数y=a(x-m)2-a(x-m)(a,m为常数,且a≠0).(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点.(2)设该函数的图象的顶点为C,与x轴交于A,B两
题目详情
(2013•南京)已知二次函数y=a(x-m)2-a(x-m)(a,m为常数,且a≠0).
(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点.
(2)设该函数的图象的顶点为C,与x轴交于A,B两点,与y轴交于D点.
①当△ABC的面积为1时,求a的值
②当△ABC的面积与△ABD的面积相等时,求m的值.
(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点.
(2)设该函数的图象的顶点为C,与x轴交于A,B两点,与y轴交于D点.
①当△ABC的面积为1时,求a的值
②当△ABC的面积与△ABD的面积相等时,求m的值.
▼优质解答
答案和解析
(1)证明:令y=0,a(x-m)2-a(x-m)=0,
△=(-a)2-4a×0=a2,
∵a≠0,
∴a2>0,
∴不论a与m为何值,该函数的图象与x轴总有两个公共点;
(2)①y=0,则a(x-m)2-a(x-m)=a(x-m)(x-m-1)=0,
解得x1=m,x2=m+1,
∴AB=(m+1)-m=1,
y=a(x-m)2-a(x-m)=a(x-m-
)2-
,
△ABC的面积=
×1×|-
|=1,
解得a=±8;
②x=0时,y=a(0-m)2-a(0-m)=am2+am,
所以,点D的坐标为(0,am2+am),
△ABD的面积=
×1×|am2+am|,
∵△ABC的面积与△ABD的面积相等,
∴
×1×|am2+am|=
×1×|-
|,
整理得,m2+m-
=0或m2+m+
=0,
解得m=
或m=-
.
△=(-a)2-4a×0=a2,
∵a≠0,
∴a2>0,
∴不论a与m为何值,该函数的图象与x轴总有两个公共点;
(2)①y=0,则a(x-m)2-a(x-m)=a(x-m)(x-m-1)=0,
解得x1=m,x2=m+1,
∴AB=(m+1)-m=1,
y=a(x-m)2-a(x-m)=a(x-m-
1 |
2 |
a |
4 |
△ABC的面积=
1 |
2 |
a |
4 |
解得a=±8;
②x=0时,y=a(0-m)2-a(0-m)=am2+am,
所以,点D的坐标为(0,am2+am),
△ABD的面积=
1 |
2 |
∵△ABC的面积与△ABD的面积相等,
∴
1 |
2 |
1 |
2 |
a |
4 |
整理得,m2+m-
1 |
4 |
1 |
4 |
解得m=
−1±
| ||
2 |
1 |
2 |
看了 (2013•南京)已知二次函...的网友还看了以下:
如图1,点A(m,m+1)、B(m+3,m-1)均在反比例函数y=kx的图象上,正比例函数y=nx 2020-04-08 …
坐标平面上的点M(m+1,m-1)不可能在( )象限 A.第一象限 B.第二象限 C.第三象限 D 2020-05-16 …
(2013•南京)已知二次函数y=a(x-m)2-a(x-m)(a,m为常数,且a≠0).(1)求 2020-06-12 …
如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其 2020-06-14 …
已知二次函数y=2x2-mx-m2.(1)求证:对于任意实数m,该二次函数图象与x轴总有公共点;( 2020-06-27 …
已知抛物线y=2x^2-4mx+m^21.已知二次函数y=2x^2-4mx+m^2,该函数图象与x 2020-07-16 …
已知二次函数y=2x2-mx-m2.(1)求证:对于任意实数m,该二次函数图象与x轴总有公共点;( 2020-07-26 …
平面直角坐标系内,若点A(m,n)在第三象限,则点B(1-m,m+n)在A.第一象限B.第二象限C 2020-07-31 …
已知二次函数y=a(x-m)2-a(x-m)(a,m为常数,且a≠0).(1)求证:不论a与m为何 2020-08-02 …
1,已知一次函数y=kx+b的图象与x轴y轴分别交与A(m,0),B(0,n),且m=3n,该直线与 2020-11-27 …