早教吧作业答案频道 -->数学-->
求不定积分∫{√[(1+x)/(1-x)]}/xdx
题目详情
求不定积分
∫{√[(1+x)/(1-x)]}/xdx
∫{√[(1+x)/(1-x)]}/xdx
▼优质解答
答案和解析
(1+x)/(1-x)>=0
1>x>=-1
令x=cos2A
∫{√[(1+x)/(1-x)]}/xdx
=∫cosA/(sinAcos2A) dcos2A
=∫-2sin2AcosA/(sinAcos2A) dA
=∫-4cosA^2/cos2A dA
=∫-4cosA^2/(2cos2A^2-1) dA
=∫-4cosA^2/(cosA^2-sinA^2) dA
=∫-4/(1-tanA^2) dA (令y=tanA)
=∫-4/[(1-y^2)(1+y^2)]dy
=∫-4/(1-y^4)dy
=∫-1/(1-y)dy +∫-1/(1+y)dy +∫-2/(1+y^2)dy
=ln(1-y)-ln(1+y)-2arctany+C
=ln[(1-tanA)/(1+tanA)]-2A+C
(cosA=[(x+1)/2]^(1/2)sinA=[(1-x)/2]^(1/2) )
=ln[(1-(1-x^2)^(1/2)]-arccosx+C
`
1>x>=-1
令x=cos2A
∫{√[(1+x)/(1-x)]}/xdx
=∫cosA/(sinAcos2A) dcos2A
=∫-2sin2AcosA/(sinAcos2A) dA
=∫-4cosA^2/cos2A dA
=∫-4cosA^2/(2cos2A^2-1) dA
=∫-4cosA^2/(cosA^2-sinA^2) dA
=∫-4/(1-tanA^2) dA (令y=tanA)
=∫-4/[(1-y^2)(1+y^2)]dy
=∫-4/(1-y^4)dy
=∫-1/(1-y)dy +∫-1/(1+y)dy +∫-2/(1+y^2)dy
=ln(1-y)-ln(1+y)-2arctany+C
=ln[(1-tanA)/(1+tanA)]-2A+C
(cosA=[(x+1)/2]^(1/2)sinA=[(1-x)/2]^(1/2) )
=ln[(1-(1-x^2)^(1/2)]-arccosx+C
`
看了 求不定积分∫{√[(1+x)...的网友还看了以下:
已知x,y,z∈R+,x+y+z=3①求(1/x)+(1/y)+(1/z)的最小值②证明:已知x,y 2020-03-30 …
(急)极限问题:x趋近于0正,求[(1+x)^(1/x)/e]^(1/x)的极限x趋近于0正,求[ 2020-05-13 …
初中代数式和整数立方差!一、用代数式1、88888x33333+44444x333342、当x=2 2020-05-14 …
1.已知25^x=1004^y=100求1/X+1/Y(求X分之一加Y分之一的和)2.若a、b为实 2020-06-13 …
已知:|x|=4,|y|=3,且x,y同号,求1/(x+5)(y+5)+1/(x+6)(y+6)+ 2020-07-19 …
1.x^2-1/x^2+2x+1÷2x^2-2/ax^2+8x+4÷(x-1)^22.(x^2-y 2020-07-22 …
已知1/x-1/x+1=1/x(x+1)求1/x(x+1)+1/(x+1)(x+2).1/(x+99 2020-10-31 …
x、y、z属于正实数,且xyz=1,求1/(x^2(y+1)+1)+1/(y^2(z+1)+1)+1 2020-10-31 …
4x+9y=1求1/x+1/y的最小值错题当x=y时,1/x+1/y最小值为2/√(xy),根据4x 2020-10-31 …
1)1+x+x^2=0,求1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^10的 2020-11-01 …