早教吧作业答案频道 -->数学-->
用数学归纳法证明3^n≥n^3则n的最小值可取
题目详情
用数学归纳法证明3^n≥n^3则n的最小值可取
▼优质解答
答案和解析
1.n=1,3^n=3^1=3>=1=1^3
n=2,3^2=9>8=2^3
n=3,3^3=27=3^3
2.假设 n=k 时,3^k>k^3 (k>3)
则n=k+1时
x^(k+1)=3*3^k>=3k^3
假定 3k^3>=(k+1)^3,则x^(k+1)>=(k+1)^3
根据数学归纳法,3^n>=n^3
而 3k^3>=(k+1)^3,即3k^3>=k^3+3k^2+3k+1,2k^3-3k^2-3k-1>=0 .(1)
令 f(x)=2x^3-3k^2-3x-1 (x>1,x为整数)
f'(x)=6x^2-6x-3=6(x^2-x-1/2)=6[(x-1/2)^2-3/4]
显然f'(x)是增函数,当 x>1时,f'(x)>=f(2)=6[(2-1/2)^2-3/4]=6[9/4-3/4]=9>0
f'(x)>0,f(x)也是增函数
f(1)=2-3-3-1=-62时,f(x)>0恒成立
因此k>2时,(1)恒成立
根据题设k>3,所以(1)恒成立
从而假定是成立的
因此3^n>=n^3,等式只有在 n=3 时成立
n=2,3^2=9>8=2^3
n=3,3^3=27=3^3
2.假设 n=k 时,3^k>k^3 (k>3)
则n=k+1时
x^(k+1)=3*3^k>=3k^3
假定 3k^3>=(k+1)^3,则x^(k+1)>=(k+1)^3
根据数学归纳法,3^n>=n^3
而 3k^3>=(k+1)^3,即3k^3>=k^3+3k^2+3k+1,2k^3-3k^2-3k-1>=0 .(1)
令 f(x)=2x^3-3k^2-3x-1 (x>1,x为整数)
f'(x)=6x^2-6x-3=6(x^2-x-1/2)=6[(x-1/2)^2-3/4]
显然f'(x)是增函数,当 x>1时,f'(x)>=f(2)=6[(2-1/2)^2-3/4]=6[9/4-3/4]=9>0
f'(x)>0,f(x)也是增函数
f(1)=2-3-3-1=-62时,f(x)>0恒成立
因此k>2时,(1)恒成立
根据题设k>3,所以(1)恒成立
从而假定是成立的
因此3^n>=n^3,等式只有在 n=3 时成立
看了 用数学归纳法证明3^n≥n^...的网友还看了以下:
初等数论第4次作业 1.论述题 求2545与360的最大公约数.2.论述题 证明:设m,n为整数, 2020-05-16 …
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
数列{an}与{bn}满足关系:a1=2,a(n+1)=(an^2+1)/2an,bn=(an+1 2020-07-22 …
(1/2)已知an=(1+根号下2)的n次方(n属于N*)若an=a+b根号下2(a.b属于Z)求 2020-07-30 …
高中数学重要函数极限的证明Lim(1+1/n)n如何证?如题当N--->无穷大时(1+1/n)^n 2020-08-01 …
数论第一次作业1.求2545与360的最大公约数.2.求487与468的最小公倍数.3.求1001! 2020-11-06 …
1.M={x|x=2n+1,n∈Z},N={y=4n±1,n∈Z}求证M=N怎么证M包含于N关于N包 2020-12-02 …