早教吧作业答案频道 -->数学-->
第一数学归纳法证明:1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6的问题我在一本很牛叉的中学思想方法书上看到用“第一数学归纳法”证明.第一数学归纳法:设P(n)是依赖与自然数n的命题,若P(n)当n=1时成立
题目详情
第一数学归纳法证明:1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6的问题
我在一本很牛叉的中学思想方法书上看到用“第一数学归纳法”证明.
第一数学归纳法:设P(n)是依赖与自然数n的命题,若P(n)当n=1时成立;则在P(k)成立的假定下可以证明P(k+1)成立,那么P(n)对于任意自然数n皆成立.例如:
求证:1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6 对于任意自然数n成立
证明:当n=1时,左边=1^2=1,右边=1,∴n=1求证式成立
设n=k时求证式成立,则n=k+1时有 1^2+2^2+...+k^2+(k+1)^2
=(1^2+2^2+...+k^2) + (k+1)^2 = k(k+1)(2k+1)/6 + (k+1)^2 = (k+1)(k+2)(2k+3)/6
即n=k+1时求证式已成立,综上可知求证式对于任意自然数成立
上面的过程还有第一数学归纳法我都看懂了、就是不知道为什么能这样?为什么能
n=1时成立,设n=k成立,若n=k+1对原式成立,那么原式对任意自然数都成立?为啥?第一归纳法是怎么来的?
我在一本很牛叉的中学思想方法书上看到用“第一数学归纳法”证明.
第一数学归纳法:设P(n)是依赖与自然数n的命题,若P(n)当n=1时成立;则在P(k)成立的假定下可以证明P(k+1)成立,那么P(n)对于任意自然数n皆成立.例如:
求证:1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6 对于任意自然数n成立
证明:当n=1时,左边=1^2=1,右边=1,∴n=1求证式成立
设n=k时求证式成立,则n=k+1时有 1^2+2^2+...+k^2+(k+1)^2
=(1^2+2^2+...+k^2) + (k+1)^2 = k(k+1)(2k+1)/6 + (k+1)^2 = (k+1)(k+2)(2k+3)/6
即n=k+1时求证式已成立,综上可知求证式对于任意自然数成立
上面的过程还有第一数学归纳法我都看懂了、就是不知道为什么能这样?为什么能
n=1时成立,设n=k成立,若n=k+1对原式成立,那么原式对任意自然数都成立?为啥?第一归纳法是怎么来的?
▼优质解答
答案和解析
数学上证明与自然数N有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立.
首先证明的不一定是n=1,一般都是第一项就行.
而且验证设n=k成立时,首先K值是集合中任意满足的.
也就是说是定义域,验证若n=k+1对原式成立,是后一项,也就是递推性的原理
加入k=3,哪后一项就是4,同理R就是R+1,也就是无限下去,全都满足,当然也就满足的所有数.
数学归纳法的原理,通常被规定作为自然数公理(参见皮亚诺公理).但是在另一些公理的基础上,它可以用一些逻辑方法证明.数学归纳法原理可以由下面的良序性质(最小自然数原理)公理可以推出:
自然数集是良序的.(每个非空的正整数集合都有一个最小的元素)
比如{1,2,3 ,4,5}这个正整数集合中有最小的数——1.
下面我们将通过这个性质来证明数学归纳法:
对于一个已经完成上述两步证明的数学命题,我们假设它并不是对于所有的正整数都成立.
对于那些不成立的数所构成的集合S,其中必定有一个最小的元素k.(1是不属于集合S的,所以k>1)
k已经是集合S中的最小元素了,所以k-1是不属于S,这意味着k-1对于命题而言是成立的——既然对于k-1成立,那么也对k也应该成立,这与我们完成的第二步骤矛盾.所以这个完成两个步骤的命题能够对所有n都成立.[1]
注意到有些其它的公理确实是数学归纳法原理的可选的公理化形式.更确切地说,两者是等价的.
首先证明的不一定是n=1,一般都是第一项就行.
而且验证设n=k成立时,首先K值是集合中任意满足的.
也就是说是定义域,验证若n=k+1对原式成立,是后一项,也就是递推性的原理
加入k=3,哪后一项就是4,同理R就是R+1,也就是无限下去,全都满足,当然也就满足的所有数.
数学归纳法的原理,通常被规定作为自然数公理(参见皮亚诺公理).但是在另一些公理的基础上,它可以用一些逻辑方法证明.数学归纳法原理可以由下面的良序性质(最小自然数原理)公理可以推出:
自然数集是良序的.(每个非空的正整数集合都有一个最小的元素)
比如{1,2,3 ,4,5}这个正整数集合中有最小的数——1.
下面我们将通过这个性质来证明数学归纳法:
对于一个已经完成上述两步证明的数学命题,我们假设它并不是对于所有的正整数都成立.
对于那些不成立的数所构成的集合S,其中必定有一个最小的元素k.(1是不属于集合S的,所以k>1)
k已经是集合S中的最小元素了,所以k-1是不属于S,这意味着k-1对于命题而言是成立的——既然对于k-1成立,那么也对k也应该成立,这与我们完成的第二步骤矛盾.所以这个完成两个步骤的命题能够对所有n都成立.[1]
注意到有些其它的公理确实是数学归纳法原理的可选的公理化形式.更确切地说,两者是等价的.
看了 第一数学归纳法证明:1^2+...的网友还看了以下:
1.从第一次工业革命,南北战争,三角贸易,一战……到二战的历史联系与影响2.14世纪到20世纪重要 2020-04-25 …
英语翻译1只有思想和精神得到升华,才能有更多的人去关心和拯救这个世界.努力探索科学,生命等一切价值 2020-05-17 …
再塑生命的人1.请思考海伦凯勒为什么能创造奇迹,重塑生命?2.文中的我的感情在老师来再塑生命的人1 2020-07-07 …
游助的一笑悬命的一笑悬命是什么意思?这个发音好象是拼命干的意思? 2020-07-08 …
一个不懂的逻辑推理~A且B-->C或D的否定命题是什么?和逆否命题一样吗?分别是什么?一楼理解错我 2020-07-13 …
下面有2句话:(1)真命题的逆命题一定是真命题;(2)假命题的逆命题不一定是假命题,其中,正确的( 2020-08-01 …
一个命题是假命题.那么它的非命题一定是真命题若a大于b,则1/a小于1/b。这个命题很明显是个假命 2020-08-01 …
给定四个结论:(1)一个命题的逆命题为真,其否命题一定为真;(2)若p∨q为假命题,则p、q均为假 2020-08-01 …
这两个命题是否一样?这两个命题是否一样?例子:(1)若A=1,B=2,C=A+B,则C=3;(2) 2020-08-01 …
冰心说:“我不敢说生命是什么,我只能说生命像什么。”生命像什么,每个人都有自己的思考和理解……生命是 2020-11-05 …