早教吧作业答案频道 -->语文-->
阅读《傅雷家书》选段。1956年2月29日夜亲爱的孩子:昨天整理你的信,又有些感想。关于莫扎特的话,例如说他天真、可爱、清新等等,似乎很多人懂得;但弹起来还是
题目详情
阅读《傅雷家书》选段。 1956年2月29日夜 亲爱的孩子:昨天整理你的信,又有些感想。 关于莫扎特的话,例如说他天真、可爱、清新等等,似乎很多人懂得;但弹起来还是没有那天真、可爱、清新的味儿。这道理,我觉得是“理性认识”与“感情深入”的分别。感性认识固然是初步印象,是大概的认识;理性认识是深入一步,了解到本质。但是艺术的领会,还不能以此为限。必须再深入进去,把理性所认识的,用心灵去体会,才能使原作者的悲欢喜怒化为你自己的悲欢喜怒,使原作者每一根神经的震颤都在你的神经上引起反响。否则即使道理说了一大堆,仍然是隔了一层。一般艺术家的偏于intellectual[理智],偏于cold[冷静],就因为他们停留在理性认识的阶段上。 比如你自己,过去你未尝不知道莫扎特的特色,但你对他并没发生真正的共鸣;感之不深,自然爱之不切了;爱之不切,弹出来当然也不够味儿;而越是不够味儿,越是引不起你兴趣。如此循环下去,你对一个作家当然无从深入。 这一回可不然,你的确和莫扎特起了共鸣,你的脉搏跟他的脉搏一致了,你的心跳和他的同一节奏了;你活在他的身上,他也活在你身上;你自己与他的共同点被你找出来了,抓住了,所以你才会这样欣赏他,理解他。 由此得到一个结论:艺术不但不能限于感性认识,还不能限于理性认识,必须要进行第三步的感情深入。换言之,艺术家最需要的,除了理智以外,还有一个“爱”字!所谓赤子之心,不但指纯洁无邪,指清新,而且还指爱!法文里有句话叫做“伟大的心”,意思就是“爱”。这“伟大的心”几个字,真有意义。而且这个爱决不是庸俗的,婆婆妈妈的感情,而是热烈的、真诚的、洁白的、高尚的、如火如荼的、忘我的爱。 从这个理论出发,许多人弹不好东西的原因都可以明白了。光有理性而没有感情,固然不能表达音乐;有了一般的感情而不是那种火热的同时又是高尚、精练的感情,还是要流于庸俗;所谓sentimental[滥情,伤感],我觉得就是指的这种庸俗的感情。 一切伟大的艺术家(不论是作曲家,是文学家,是画家……)必然兼有独特的个性与普遍的人间性。我们只要能发掘自己心中的人间性,就找到了与艺术家沟通的桥梁。若再能细心揣摩,把他独特的个性也体味出来,那就能把一件艺术品整个儿了解了。——当然不可能和原作者的理解与感受完全一样,了解的多少、深浅、广狭,还是大有出入;而我们自己的个性也在中间发生不小的作用。 1.结合语境,解释下面词语的含义。 真正的共鸣: 2.作者在分析了孩子过去和现在弹奏的差别后,得出了一个结论是: 。 3.作者认为一切伟大的艺术家除了具有普遍的人间性,还要兼有 。 4.傅雷对儿子的教导对你有什么启发? 5.选文是洋溢着父子深情的家书,耐人寻味,深切感人。和一般的讲道理的文章比较,本文的语言有什么特点? |
▼优质解答
答案和解析
1.“使原作者的悲欢喜怒化为你自己的悲欢喜怒,使原作者每一根神经的震颤都在你的神经上引起反响。”(或“你的脉博跟他的脉博一致了,你的心跳和他的同一节奏了;你活在他的身上,他也活在你身上;你自己与他的共同点被你找出来了,抓住了”) 2.“艺术不但不能限于感性认识,还不能限于理性认识,必须要进行第三步的感情深入。” (用自己的语言概括或摘引文中的原话均可得分) 3.独特的个性。 4.示例:艺术最需要的是“爱”,要有一颗“伟大的心”,只有这样才能产生共鸣。不仅艺术是这样,做其它事情都是这样。(意思对即给分) 5.示例:亲切自然,娓娓道来,循循善诱, 语重心长。(意思对即可得分) |
看了 阅读《傅雷家书》选段。195...的网友还看了以下:
关于高二不等式设00,a、b为常数,a^2/x+b^2/(1-x)的最小值是我知道可以用柯西不等式 2020-04-26 …
当x=()时,代数式5分之2x-1的值等于2关于的两个方程5x-3=4x与ax-12=0,则a=( 2020-05-23 …
如图为关节示意图,据图回答问题:(1)关节是由关节头、关节窝、以及关节囊.(2关节的牢固性与图中的 2020-06-21 …
下面2句话意思是一样的么?如果不一样,是在那里不一样捏?1:申请人要求行政机关对公示内容予以说明. 2020-07-12 …
2^3=3^y=5^z>1,则2x,3y,5z的大小关系为?我的方法是令2x=3y=5z,得出x, 2020-07-15 …
关于不确定关系△x△p(x下标)≥h有一下几种理解1粒子的动量不可能确定,但坐标可以被确定2粒子的 2020-07-29 …
物理公式的比例关系A,F=Gm1m2/r^2可知F与r的平方成饭比B,F=mv^2/r可知r与F成饭 2020-11-01 …
设向量组α1,α2,...,αm线性无关,β1可由α1,α2,...,αm线性表示,但β2不可由α1 2020-11-03 …
已知n维向量α1,α2...αs可由β1,β2...βs线性表示,且α1,α2...αs线性无关,证 2020-11-03 …
线性代数,向量组证明,用秩.已知n维向量α1,α2,α3线性无关.若β1,β2,β3可由α1,α2, 2020-11-11 …